Astri Logo White
Search icon
Astri Logo White
search icon

Complex Event Computation System and Platform for Uncertain Data

Project Title:
Complex Event Computation System and Platform for Uncertain Data
Project Reference:
ART/207CP
Project Type:
Platform
Project Period:
15 / 01 / 2016 - 14 / 07 / 2017
Funds Approved (HK$’000):
10746
Project Coordinator:
Dr James Zhibin Lei
Deputy Project Coordinator:
/
Deliverable:

1.1 Platform requirement and system architecture; 1.2 Complex event computation infrastructure and platform design 1.2.1 Event stream framework and processing module 1.2.2 System modules and tools – real-time database optimization, Java libraries (chart, multiple sorting), cross-language messaging, high-performance communication and caching module 1.3 Basic quantitative analysis and statistical tools 1.4 Extensible API for supporting outside applications 2.1 Hybrid CEC engine supporting explicit and implicit event modelers 2.1.1 Quantitative analysis and application modules 2.1.2 Statistical toolbox and supporting modules for hybrid model 2.2 Quantitative analysis, optimization, and estimation algorithms for Parametric Modeling 3.1 Built-in stream data infrastructure supporting efficient stream statistical package 3.2 Tools and modules for financial big data applications 3.3 General-purpose, distributed, scalable, fault-tolerant, pluggable platform for processing continuous unbounded streams of data

Research Group:

Dr Andrew Yiu-Wing Wat
Dr Jerome Yen
Mr Yu Liu
Dr Kent Kang Heng Wu
Mr Cheuk Lun, Calvin Cheung
Dr Yang Liu
Mr Xiaoyu Zhao
Mr Amir Shiyu Liao
Mr Mengte, Matt Miao
Mr Carlos Chiu
Mr Zuyao Wang
Mr Wai Cheong Ku
Mr Jiqi, Jacky Zhang
Dr Man Yau, Edmond Chiu


Sponsor:

Genius Union Limited (Licensing) [Sponsor]
Nebula Technology Ltd (Licensing) [Sponsor]
t.Axiom Solutions Ltd (Inkind) [Sponsor]
t.Axiom Solutions Ltd (Licensing) [Sponsor]

Description:

Complex Event Computation System and Platform for Uncertain Data Project focuses on developing an efficient, scalable and high performance computational engine and its data infrastructure platform to enable new and innovative products, services, and applications that deal with big data with uncertainties. The project aims to build the core complex data platform with high performance data process and explicit/implicit event modeling, low latency stream data analysis, distributed statistical computation, optimal execution, and effective risk management to enable partners, e.g. quantitative talents in academics and industry to build, develop, and commercialize new products and applications on a common cost-effective platform.

Co-Applicant:
/
Keywords:
/