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Introduction

Data plays a crucial role in the insurance sector and in digital 

transformation. However, data privacy concerns and strict data 

handling regulations are hindering the development of data-

driven solutions and AI innovations in the industry. Federated 

learning (FL) offers a promising solution to this problem, as 

it allows insurers to leverage machine learning (ML) while 

safeguarding individual data privacy.

Against this background, in March 2023 the Insurance Authority 

(IA) and the Hong Kong Applied Science and Technology 

Research Institute (ASTRI) undertook this research project 

with the aim of exploring some potential FL applications for the 

insurance industry.

The project had three stages:

•	 Stage 1. Platform Development: ASTRI developed an FL 

platform specifically tailored for the insurance industry.

•	 Stage 2. Proof-of-Concept (PoC): This stage involved 

data collaboration between insurers and various other 

sectors in order to evaluate the platform’s efficiency and 

effectiveness.

•	 Stage 3. White Paper: This white paper documents the 

PoC stage and its findings, and discusses various FL-

related technical risks and compliance issues.

Objectives

This white paper aims to:

•	 Enhance the insurance industry’s understanding of FL, 

with a focus on its potential to help the industry leverage 

alternative data effectively;

•	 Identify and address technical risks, compliance 

considerations, and governance issues related to the 

implementation of FL within the insurance sector; and

•	 Describe some PoC applications that utilise FL to extract 

insights from diverse data sources across the insurance 

value chain.

Federated Learning

FL is an advanced ML technique that enables models to 

be trained on decentralised datasets. Unlike traditional ML 

which requires data to be centralised in a single location, 

FL enables models to be trained directly on the devices or 

servers where the data resides. This decentralised approach 

prioritises data privacy protection, enabling compliance with 

data privacy regulations while facilitating data collaboration 

across organisations and sectors. For industries that handle a 

lot of sensitive customer data, such as the insurance sector, FL 

could be a useful tool in improving operational efficiency and 

protecting data privacy when processing data.

Rather than adopting an open-source framework, this research 

project has involved developing an FL platform specifically 

tailored to the needs of the insurance sector. It incorporates 

advanced privacy-enhancing techniques, optimised algorithms, 

and robust modular architectures for improved security, 

efficiency, and flexibility. Evaluation results have demonstrated 

the platform’s effectiveness in improving both levels of data 

protection and model performance.

As FL technology continues to advance, critical challenges 

remain that include handling diverse data types, ensuring 

efficient data preparation and processing, and facilitating 

seamless communication across systems. These issues are 

further examined in the PoC section.
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Risks Management and Regulatory 
Compliance

Significant amounts of personal customer information are 

collected and processed by the insurance sector, making 

effective risk management and regulatory compliance in data 

handling crucial.

This paper identifies three primary types of risk commonly 

encountered in FL: data privacy risks, model security risks, and 

performance risks. Solutions for mitigating data privacy risks 

include secure data storage, robust authentication, and data 

minimisation techniques. Model security risks, or vulnerabilities 

to adversarial attacks, necessitate the use of defences such as 

differential privacy (DP) and anomaly detection. Performance 

risks, which stem from data heterogeneity and communication 

inefficiencies, can be addressed by implementing data 

preprocessing and optimisation strategies.

The paper also considers major compliance issues relevant to 

the use of FL in the insurance industry, including compliance 

in areas such as data privacy and protection, cybersecurity, 

governance frameworks, outsourcing risks, and fair customer 

treatment.

Finally, this paper also addresses ethical issues relevant to the 

responsible use of FL, including accountability and responsibility, 

human oversight, transparency and interoperability, fairness, 

robustness, safety, and security.

This paper proposes a framework for risk management, 

compliance, and ethical standards that is designed to serve as a 

starting point for stakeholders. It should enhance stakeholders’ 

understanding of best FL practices and ensure responsible 

data usage, while fostering greater trust in FL applications 

within the insurance industry.

Proof-of-Concept

Three practical use cases have been completed in the PoC, 

involving three insurers and three companies from different 

sectors. The first use case leveraged engagement data to 

enhance the accuracy of an AI model for identifying potential 

customers. The second case incorporated clinical data to 

forecast the probability of insurance claims. The third utilised 

credit data to forecast customer renewal probabilities.

The PoC results highlighted several benefits of FL for the 

insurance industry. First, FL enables smarter predictive 

models to be developed by integrating diverse data sources, 

without compromising data privacy. This integration can lead 

to improved accuracy in predicting claims and customer 

behaviour, in turn supporting better pricing, resource 

allocation, and marketing strategies. Second, FL facilitates 

secure, cross-sector collaboration by allowing institutions to 

jointly train models without sharing sensitive data. This helps 

overcome data silos and regulatory barriers, and delivers richer 

insights and more robust models. Finally, by keeping data 

decentralised, FL aligns with evolving regulatory standards and 

fosters responsible AI practices, enhancing data privacy and 

reinforcing customer trust in the use of their data. Overall, FL 

presents a strategic opportunity for insurers to innovate and 

unlock new business.

The process of developing and executing these use cases 

also revealed several key factors essential for the successful 

adoption of FL. Strong coordination and clear communication 

between stakeholders is essential to navigate challenges 

related to data privacy, model performance, and technical 

integration. Establishing a partnership agreement can help 

define data ownership, usage rights, and each party’s expected 

contributions, thereby reducing potential misunderstandings 

and promoting collaboration. Implementing a comprehensive 

FL platform that manages the full data lifecycle, from data 

processing to customised analysis, can improve operational 

efficiency and encourage broader adoption. Furthermore, 

ensuring infrastructure is scalable is essential to accommodate 

increasing data volumes and computational demands.
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Looking forward, cross-sector partnerships, clear regulatory 

support, robust privacy protocols, and technology 

advancement will be the keys for unlocking the full potential of 

FL in the insurance sector.

Structure of the Whitepaper

•	 Part One: Alternative Data for the 
Insurance Industry

This section examines the challenges faced by the 

insurance industry regarding data availability and quality. It 

highlights the need for high-quality data and diverse data 

sources for accurate predictions, and introduces FL as a 

potential solution for harnessing third-party data.

•	 Part Two: Federated Learning in 
Insurance: Exploring Risks, Regulations, 
and Strategies

This part introduces what FL is, and explores its potential 

risks for the insurance sector. It also addresses the 

issues organisations must consider before adopting FL, 

emphasising the importance of regulatory compliance and 

risk management.

•	 Part Three: Federated Learning 
Infrastructure for the Insurance Industry

This section proposes a framework for implementing 

FL in insurance. It discusses the need for an Insurtech 

infrastructure capable of managing data sourcing, 

structuring, privacy, and decision-making processes.

•	 Part Four: Technical Evaluation of the 
Proposed Framework

This part assesses the technical feasibility of the proposed 

framework using open-source insurance datasets. The 

evaluation examines how alternative data and varying data 

volumes affect the performance of different ML models.

•	 Part Five: Proof-of-Concept Work

This section describes three use cases developed during 

the PoC phase, to show some practical applications of 

the proposed framework across diverse business tasks. 

It also discusses key considerations for the successful 

implementation of FL.

•	 Part Six: Roadmap for the Future

The final part offers a roadmap for the adoption of FL in 

Hong Kong. It emphasises the need for a multi-pronged 

strategy, encompassing technical advancements in areas 

like efficiency, scalability and security, organisational 

changes to drive its adoption among insurers, and cross-

sector collaboration to enhance data availability and 

collective defence against emerging threats.
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Data plays a critical role in the insurance industry. Insurance 

companies rely heavily on data to make informed decisions, 

assess risks accurately, and provide personalised customer 

experiences.

Expanding the use of data sources has the potential to help 

the insurance industry in Hong Kong to address several 

challenges that could impact its long-term growth and stability. 

The industry’s over-reliance on long-term, non-linked individual 

life and annuity products with significant saving and investment 

elements has limited the range of insurance solutions available 

to consumers, making it vulnerable to changes in customer 

preferences and market conditions. Additionally, variable 

underwriting performance in the general insurance market has 

exposed the industry to potential volatility and external shocks. 

Leveraging data analytics and emerging technologies could 

help address these problems, enabling insurers to diversify their 

product offerings, improve their underwriting, and enhance 

their risk management.

This part gives an overview of the insurance sector landscape and 

highlights the current challenges and opportunities, particularly 

with respect to exploring diverse data sources to enhance the 

efficacy and efficiency of insurance operations. It suggests the 

use of federated learning (FL) as a way of insurers broadening the 

data sources available for making informed business decisions 

while at the same time protecting data privacy.

1.1 Challenges and Opportunities in 
the Insurance Industry

1.1.1 Insurance Market Overview for 
Hong Kong

The Hong Kong insurance market is a well-developed and 

competitive one that encompasses various segments, which 

mostly fall into two categories: general insurance and long-

term insurance. Table 1 below shows various common types 

of insurances in these two categories.

The insurance industry is a major driving force in Hong Kong’s 

economy. Despite the challenges posed by COVID-19 and the 

subdued economic recovery that has followed, Hong Kong’s 

insurance market remains highly advanced and competitive, 

with impressive insurance density and penetration rates.

Table 1 Major types of insurance business

Categories Insurance types

Long-term insurance •	 Life and annuity

•	 Marriage and birth

•	 Linked long term

•	 Permanent health

•	 Tontines

•	 Capital redemption

•	 Retirement schemes

General insurance •	 Accident

•	 Sickness

•	 Vehicles

•	 Fire and natural forces

•	 Damage to property

•	 Motor vehicle liability

•	 General liability
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Figure 1
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In 2024, according to the Insurance Authority’s provisional 

statistics, Hong Kong had a total gross premium of HK$637.8 

billion. The insurance density1 (US$8,769 or approximately 

HK$68,000) and insurance penetration2 rate (17%) in 2023 

placed Hong Kong second and first in the world respectively3. 

Figure 1 illustrates the trends in insurance density and 

penetration in Hong Kong over the years. In terms of players, 

Hong Kong has approximately 160 authorized insurers, six 

of whom are ranked among the top 10 in the world. The 

intermediaries market is also very strong, with the city having 

over 120,000 licensed insurance intermediaries.

Long-term insurance business accounts for the majority 

of the insurance market in Hong Kong. In 2024, the office 

premiums5 for in-force long-term business reached HK$537.4 

billion. Notably, within the non-linked business6, with-profits 

business7 dominated, accounting for a significant 90.7% of 

in-force office premiums, suggesting that the market tends to 

favour products with savings and investment elements. New 

office premiums were HK$219.8 billion, mainly composed of 

HK$208.1 billion derived from non-linked individual business 

and HK$11.2 billion derived from linked individual business. 

Overall, mainland visitors generated $62.8 billion, accounting 

for 28.6% of the total individual new business in the same year. 

Figure 2 shows a more detailed market breakdown of long-

term insurance business.

1	 Insurance density refers to the ratio of insurance premiums to the total population.
2	 Insurance penetration refers to the ratio of insurance premiums to GDP of an economy.
3	 Swiss Re Institute, World Insurance: Stirred, and Not Shaken, July 2023.
4	 Swiss Re Institute and the Insurance Authority.
5	 Office premiums in relation to a financial year of an insurer, means: a) for policies with single mode of payment, the premiums paid by policy holders during the financial year; 

or b) for policies with regular mode of payment, the annualised premiums of the policies as at the valuation date or the flexible premiums paid by the policy holders during the 
financial year.

6	 Non-linked business refers to policies that are not linked to the stock market, meaning that their returns are not based on how the market performs. Linked business, on the other 
hand, refers to policies that are linked to the stock market, with returns based on how the market performs.

7	 With-profits business means business in which policy holders are entitled to participate in the distributable surplus of the insurer, in addition to receiving their contractual 
benefits.
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Figure 2
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In 2024, including direct and reinsurance businesses, the 

general insurance industry generated a total of HK$100.5 

billion in gross premiums. As shown in Figure 3, the general 

insurance sector has multiple insurance categories, including 

property damage, accident and health, and general liability, 

giving it a more diverse composition. However, the general 

insurance sector’s underwriting performance fluctuates quite 

significantly from year to year, as it often acts as a shock 

absorber for society at large.  A wide range of factors, such 

as the extreme weather conditions, can influence the sector’s 

financial results across multiple lines of business. Managing 

these financial fluctuations effectively is essential for insurers to 

maintain operational efficiency.

Notwithstanding its considerable market size and relatively 

developed status, the insurance sector in Hong Kong still has 

room for improvement. Currently the market is largely driven 

by the long-term insurance sector, which mainly consists of 

non-linked individual life and annuity products with saving or 

investment elements. This indicates a potential opportunity 

to diversify and expand the range of insurance offerings. 

Furthermore, the fluctuating underwriting performance of 

general insurance business suggests there is further room to 

enhance efficiency and support growth in this sector.

Other variable and unpredictable circumstances, such as 

extreme weather due to climate change, increasing geopolitical 

risks and the development of competing insurance markets, 

further emphasise the need for continuous adaptation and 

improvement within the Hong Kong insurance industry.

One way for Hong Kong to maintain its comparative advantage 

in insurance is for Hong Kong insurers to explore ways 

of leveraging data across the value chain. Data analytics 

and technology have the potential to provide insurers with 

important insights into client behaviour, risk patterns, and 

market trends, thus facilitating more accurate risk assessment, 

streamlining claims processing, and enabling the development 

of customised insurance solutions. Ultimately, this should result 

in improved underwriting performance, enhanced customer 

experience, and a boost in profitability.

1.1.2 Importance of Data in Insurance

The insurance industry is underpinned by data. Traditionally, 

insurance firms have relied on internal and structured data, such 

as demographic information (e.g. age, gender, occupation) 

and basic health-related particulars provided by customers, 

to inform their underwriting decisions, determine premiums, 

assess and settle claims, and combat fraud. In today’s era of 

digitalisation, these traditional datasets are increasingly being 

combined with new types of data generated and collected 

from sources outside the company’s own operations and 

databases, such as third-party providers, internet-connected 

devices, social media platforms, and other external sources, 

enabling more sophisticated and comprehensive analyses to 

be undertaken.
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Furthermore, more insurance companies are turning to big 

data analytics (BDA) tools such as artificial intelligence (AI) and 

machine learning (ML) to enhance their efficiency and reduce 

their operational costs. According to a 2025 survey conducted 

by the Insurance Authority, 20% of insurers in Hong Kong have 

established a strategy to steer AI adoption and are implementing 

AI applications. Over half are in the exploratory or pilot phases, 

while 40% plan to expand their AI investments within the next 

two years. The ability to effectively collect, organise, analyse, 

and utilise data has become a key differentiator for insurance 

firms, offering a marked competitive edge.

As illustrated in Figure 48, rapid changes are evident throughout 

the insurance value chain due to digitalisation and BDA. 

They range from product design, underwriting and pricing to 

marketing and distribution, claims processing and ongoing 

customer relationship management.

Figure 4 Usage of big data analytics (BDA) across the insurance product lifecycle

• Personalisation of cover

• Customer-specific targeted 
marketing

• Internet sales and price 
comparison websites

• Social media and smartphone/
device channels for direct 
distribution

• Robo-advice

• Telematics data (e.g. wearables, loT, smartphones, 
apps) helping customers and insurers understand 
and manage risks

• BDA enabling more effective verification checks, 
granular and accurate pricing, and faster underwriting

• Granular, customer-specific product offerings (e.g. 
usage-based insurance)

• Genetic data impacting pricing and availability of 
insurance products

• Fraud detection using BDA

• AI and drones in assessing claims

• Claims cost efficiencies from AI/automated 
assessing, optimised payouts, reduced labour costs

• BDA creating new opportunities for risk mitigation 
and loss reduction partnership between insurers and 
customers

• Platform-based business 
models

• 360-degree view of customers

• Continuous real-time data 
enabling a focus on high-value 
customers

• Analysis and learning from 
unstructured data (e.g. voice 
data)

• Automated (including 
non-human) product service 
centres using robo-advice 
chatbots and AI

• BDA enabling prediction of 
customers’ needs and 
preferences

• Continuous real-time customer 
communication and 
underwriting

Pricing and

Underwriting

Product 

Management

Claims 

Handling

Customer

Interactions

Marketing,
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8	 International Association of Insurance Supervisors (IAIS), Issues Paper on Use of Big Data Analytics in Insurance, March 2020.
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1.1.3 Usage of Traditional Data and 
its Limitations

Traditional data in insurance refers to data gathered from 

internal industry sources, such as policy management systems 

(e.g. application forms), claims databases, actuarial tables, and 

other established data repositories within insurance companies. 

This data is usually obtained directly from customers, and 

is managed by the insurance companies. It is essential for 

insurance operations as it enables insurers to assess risk, set 

premiums, and manage policies effectively. Table 2 below 

illustrates typical examples of traditional data utilised in the 

Hong Kong insurance industry, classified into general insurance 

and long-term insurance data types:

Table 2 Typical examples of traditional data utilised in the insurance industry

Data Type General Insurance Long-Term Insurance

Basic policy 

information supplied 

by customers

•	 Policyholder details (age, income, gender, 

occupation, smoking and drinking habits, 

health status, family medical history, 

medical records, etc.)

•	 Property characteristics (geographic 

location, age, size, construction type etc.)

•	 Policyholder details (age, income, gender, 

occupation, health status, family history 

and medical records, etc.)

Historical loss 

information

•	 Claim frequency and severity data by 

business line, geography, and industry

•	 Loss development patterns over time

•	 Catastrophe and disaster loss data

•	 Mortality experience by age, gender, and 

cause of death

•	 Morbidity experience for critical illness and 

disabilities

•	 Lapse and surrender rates

Actuarial data •	 Exposure data (total insured values, earned 

premiums)

•	 Reinsurance cost information

•	 Macroeconomic and industry trend data

•	 Exposure data (policy counts, sums 

insured, premium volumes)

•	 Reinsurance cost information

•	 Macroeconomic and industry trend data 

(interest rates, inflation, etc.)

Different insurance products may draw on different kinds of 

traditional data due to their unique characteristics and risk 

profiles. For example, Accident and Health insurance in Hong 

Kong, such as that provided by the Voluntary Health Insurance 

Scheme (VHIS), determines premiums based on data about 

an individual’s health risks, which generally varies by age and 

gender. Other health-related data obtained from the application 

form, including pre-existing medical conditions, family medical 

history, and smoking habits, can also help assess the insured 

individual’s health risks.

Property Damage insurance evaluates risks using property 

characteristics, claims data, and loss history. Pet insurers, 

for example, use application form data on a pet’s breed, age, 

and medical history to analyse property damage risks and 

determine coverage, while historical claims provide data on the 

frequency and severity of incidents.

Vehicle specification data, such as model number and year, 

is important for automobile insurance since it helps determine 

a vehicle’s value, safety features, and risk of theft or accident. 

Insurers also use driving licence records to assess risk.
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Individual life and annuity insurance coverage and premiums 

correlate with data regarding the policyholder’s age and 

financial situation. Data relating to financial variables such 

as income, assets, liabilities, and expenses affect coverage, 

whereas age data closely corresponds with mortality risk. 

Pricing relies on actuarial data, such as mortality tables, used 

to estimate mortality and life expectancy.

While traditional data plays a critical role in insurance operations, 

it does have the following limitations:

•	 Limited scope: Traditional data sources focus primarily on 

historical claims and policy data, and may not fully capture 

emerging risks or changing customer behaviours. This 

reliance can lead to potential blind spots in risk assessment 

processes, as the data may not reflect the current risk 

landscape or customer needs.

•	 Retrospective nature: Traditional data is often 

retrospective, providing insights only after an incident has 

occurred. This delay is particularly problematic for risk 

management and fraud detection, where real-time data is 

essential for effective decision-making.

•	 Data isolation: Data may be isolated within different 

departments or systems, hindering a holistic view and 

making it challenging to integrate insights across the 

organisation.

Recognising these constraints, insurers are increasingly 

leveraging alternative data sources to complement traditional 

data in order to enhance their risk assessment capabilities and 

make informed decisions more rapidly.

1.1.4 Usage of Alternative Data and 
its Challenges

1.1.4.1 What is alternative data?

Alternative data refers to information sourced from outside 

an organisation’s databases and operations (including social 

media platforms, the Internet, wearable and non-wearable 

sensors, and other external data providers) that can provide 

valuable insights into the behaviour, preferences, or lifestyle 

of an entity. It often includes a wide range of unstructured 

information, including but not limited to social media activity, 

online shopping behaviour, and sensor data from connected 

devices such as Internet of Things (IoT) devices.

1.1.4.2 Potential use of alternative data 
in insurance operations

Alternative data has the potential to revolutionise various 

sectors of the insurance industry in areas such as product 

development, customer engagement and interaction, 

experience monitoring, segmentation analysis and competitor 

analysis9. However, regulations governing its uses in insurance 

vary significantly among jurisdictions. This section explores 

several types of alternative data that may be applicable to the 

Hong Kong insurance industry, based on our desktop research 

of the global industry landscape. The overview provided below 

is not exhaustive, and further research on the benefits and 

challenges associated with leveraging alternative data in the 

Hong Kong insurance context is necessary.

Like traditional data, alternative data in insurance can be 

categorised into several broad categories based on data 

type and sources. Table 3 provides a breakdown of specific 

categories and some examples of their corresponding 

sources10:

9	 Society of Actuaries Research Institute, Alternative Data Usage in Life and Health Insurance: Evidence from Australia, October 2023.
10	 Institute of Actuaries of India and India Insurtech Association, Alternate Data Sources in the Insurance Industry, February 2024.
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Table 3 Alternative data commonly used in insurance

Data Category Data Source Examples Potential Application and Benefits

Health data Clinics, hospitals, 

electronic health records, 

wearable devices, etc.

•  Fitness tracker 

data

•  Prescription 

history

•  Telemedicine 

records

Health Insurance

•  More accurate and personalised risk 

assessment for customised products and 

premiums.

•  Early detection of health risks and 

prevention, possibly leading to improved 

health outcomes, reduced claims, and 

stronger customer engagement.

Financial data Banks, credit rating 

agencies, online payment 

platforms, etc.

•  Credit card 

spending 

patterns

•  Loan repayment 

history

•  Digital payment 

behaviours

Life Insurance

•  Improved underwriting for individualised life 

insurance policies tailored to policyholders’ 

financial needs and risk tolerance.

•  Better longevity risk management

•  Enhanced customer engagement and 

retention via personalised financial 

planning services and advice.

Lifestyle and 

behaviour data

Online media 

platforms, fitness 

apps, search engine 

providers, IoT devices, 

telecommunications, etc.

•  Exercise routines

•  Website 

engagement

•  App download 

patterns

•  Telematics data 

from connected 

vehicles

•  Social media 

activity

•  Home sensor 

data from smart 

home devices

•  Shopping habits

Automobile Insurance

•  Better risk management via usage-based 

insurance (UBI) products.

•  Accident prevention reduces the likelihood 

of claims by identifying driving patterns 

and behaviours associated with higher 

accident risk.

Geospatial and 

environmental 

data

Satellite imagery, 

weather data providers, 

property records

•  Weather data

•  Traffic patterns

•  Neighbourhood 

characteristics

Property Insurance

•  More accurate property risk assessment.

•  Improved claim verification, with fewer 

on-site inspections and faster claims 

settlement.

Other reference 

data

Other data sources (e.g. 

open-source databases)

•  Market trends 

and industry 

reports

•  Publicly available 

statistics

•  Research studies 

and academic 

publications

Life and Health Insurance

•  Better understanding of mortality and 

longevity risks via the examination of 

industry reports and market trends on 

changing lifestyle patterns, medical 

advancements, and demographic shifts.

•  Refined risk assessment, benefit design 

and cost management strategies by 

analysing public data on disease incidence, 

healthcare costs, and demographic factors.
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• Health data

As defined by the General Data Protection Regulation (GDPR)11, 

personal data concerning health encompasses all information 

that discloses the physical or mental health status of a data 

subject in the past, present, or future. Aside from the basic 

health-related particulars provided by prospective policyholders 

or policyholders at policy inception, insurers may use other 

sources of health-related data to assess an individual’s overall 

health status.

Substantial amounts of health data are generated by the 

medical industry, in the form of clinical records, medical 

images, genomic data, and information on health behaviour12. 

Collaborating with the medical sector and leveraging health data 

can help insurers more effectively manage health and mortality 

risks while at the same time enhancing their performance in 

areas such as modelling, underwriting accuracy, preventive 

care, claims management, and product innovation.

For instance, analysing the health data from electronic health 

records (EHRs) and wearable devices such as fitness trackers 

can help insurers assess risk and customise coverage. In Hong 

Kong, several life and health insurers131415 have already deployed 

points-based wellness rewards programmes through mobile 

apps and wearable devices. Points-earning opportunities often 

gather information on an individual’s height, weight, physical 

activity (steps, pace, heart rate), sleep patterns, food choices, 

blood pressure, cholesterol, and blood glucose. According to 

case studies from Australia16, these initiatives can help insurers 

with their market segmentation efforts by better identifying and 

targeting healthy individuals. They can also improve customer 

retention, upselling, cross-selling, and customer modelling by 

taking advantage of greater customer involvement. In the long 

run, programme data may enable earlier and more focused 

health interventions, potentially lowering future claims expenses.

11	 EU, General Data Protection Regulation (GDPR), 2018.
12	 Kornelia Batko and Andrzej Ślęzak, The Use of Big Data Analytics in Healthcare, 2022. 
13	 AIA, AIA Vitality 健康程式, accessed 5 August 2025, https://www.aia.com.hk/zh-hk/health-and-wellness/aia-vitality.
14	 HSBC, Helping Customers Take Steps to Better Health, accessed 5 August 2025, https://www.hsbc.com/news-and-views/news/hsbc-news-archive/helping-customers-take-

steps-to-better-health.
15	 Manulife, MOVE 計劃及應用程式, accessed 5 August 2025, https://www.manulife.com.hk/zh-hk/individual/products/manulifemove/about-manulifemove/move-program-and-

app.html.
16	 Society of Actuaries Research Institute, Alternative Data Usage in Life and Health Insurance, October 2023.
17	 Insurance Authority (IA), Guideline on Financial Needs Analysis (GL30), September 2019.

• Financial data

Another valuable alternative data type for the industry is 

financial data, which reflects an entity’s financial condition, 

transactions, and creditworthiness. Such data includes credit 

ratings, debt repayment history, transactional data, and other 

financial metrics obtained from financial institutions. Credit 

history is often used to underwrite automobile or homeowner’s 

insurance policies. Some insurance companies use their own 

proprietary formulas to create insurance credit scores based 

on factors such as payment history, outstanding debt, length 

of credit history, new credit accounts, and types of credit used.

In Hong Kong, before recommending certain life insurance 

policies (e.g. annuities), insurers or licensed insurance 

intermediaries are obliged to conduct a Financial Needs 

Analysis (FNA), which is a comprehensive assessment that 

properly assesses the financial circumstances and needs of the 

customer17. Open banking allows third-party financial service 

providers to access and utilise consumer financial data with 

permission via application programming interfaces (APIs). In 

such cases, insurers may use these alternative financial data 

sources, including records of loan repayment history, credit 

card spending, investment portfolios, and property ownership, 

to analyse the customer’s financial stability, risk profile, 

coverage needs, and appropriate premium levels. However, 

using personal financial data can raise ethical and fairness 

issues, since such data often includes sensitive information, 

and individuals who lack access to digital tools or credit cards 

may be excluded. Furthermore, the Office of the Privacy 

Commissioner for Personal Data (PCPD)’s Code of Practice 

on Consumer Credit Data prohibits the use of consumer credit 

data from a credit reference agency for direct marketing.
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• Lifestyle and behaviour data

Many insurance companies are utilising digitalisation to take 

on a bigger role in their customers’ lives. Real-time device 

trackers that monitor and collect lifestyle and behaviour data 

are becoming more common in insurance. Data such as social 

media activity, consumer purchasing patterns, real time device 

tracker data, and telematics data from connected vehicles 

is helping insurers better understand consumer habits and 

preferences.

Social media data can enhance underwriting by providing 

additional insights and more precise risk assessments. For 

example, pet-related social media platforms often reveal 

information about pet owners’ engagement with their pets and 

pet lifestyles, allowing insurers to assess a pet’s living conditions 

and any potential hazards and formulate customised insurance 

plans.

Lifestyle and behaviour data from fitness trackers and other 

wearable devices can provide insights into an individual’s 

daily habits, physical activity levels, sleep patterns, and dietary 

choices. For Accident & Health Insurance, insurers may utilise 

this information to better understand an individual’s lifestyle 

choices and to promote wellness programmes that encourage 

healthy behaviours, thus lowering the risk of claims. For 

Property and Damage Insurance, insurers may use data from 

IoT devices such as home security systems, smart thermostats, 

and smoke detectors to gain insights into an individual’s lifestyle 

and living conditions.

Alternative data from telematics devices or mobile applications 

can help motor insurers accurately analyse driving risks, provide 

individualised coverage, and promote safe driving practices. 

Usage-based insurance (UBI) is a prominent example. In 

the UBI process, telematics devices are put in automobiles 

to monitor driving behaviour and use, and premiums are 

determined based on an assessment of the driving behaviour 

they reveal. Insurance rates are calculated based on a range 

of parameters, including distance travelled, data time, harsh 

braking and acceleration, speed, cornering behaviour, and 

location. Manage-How-You-Drive (MHYD) is one type of UBI 

that gives drivers real-time feedback that enables them to 

improve their driving habits, potentially lowering their premiums.

• Geospatial and environmental data

Geospatial and environmental data can enhance insurance risk 

assessment of specific locations and properties by providing 

detailed insights from sources such as weather data providers, 

satellite imagery and property records. Weather data offers 

historical and real-time information on natural disasters, aiding 

in accurate risk prediction and timely alerts. Satellite imagery 

enables precise property assessments, damage evaluations, 

and risk detection, for example by revealing proximity to 

flood zones. Property records provide comprehensive details 

of building characteristics, ownership, and historical claims, 

crucial for evaluating structural integrity and usage patterns. 

Integrating these data sources can help insurers improve their 

fraud detection, and disaster response planning.

1.1.4.3 Potential benefits and issues for 
the insurance value chain

Using advanced data analytics and alternative data sources in 

insurance operations has a variety both of potential benefits 

and challenges, as discussed below18.

18	 IAIS, Issues Paper on Increasing Digitalisation in Insurance and Its Potential Impact on Consumer Outcomes, November 2018.



014

Part One: Alternative Data for the Insurance Industry

Whitepaper on Federated Learning / 2025

• Product development and underwriting

Utilising alternative data sources in insurance enables more 

tailored insurance solutions and product innovations aimed at 

underserved populations. By leveraging alternative data such 

as IoT-enabled fitness tracker data (which reveals health and 

lifestyle choices) or sensor data (which tracks household water 

usage and identifies potential leaks), insurers can gain deeper 

insight into their customers, allowing for more customised 

coverage options and the development of novel preventative 

or situational insurance products that mitigate risks before they 

result in significant harm or costly claims.

Additionally, alternative data sources enable underwriting to 

be based on more granular data, which can improve accuracy 

and speed up risk-specific underwriting. However, such fine 

risk categorisation may affect risk pooling principles, potentially 

leading to affordability issues for certain insurance products 

and even the exclusion of higher-risk individuals. This could 

lead to less tech-savvy or less engaged customers being 

underinsured.

• Risk assessment and pricing

More precise pricing may be possible through the use of 

alternative data sources. By incorporating additional insights 

from alternative data, insurers can refine their pricing models 

and assess risk factors more comprehensively. For instance, 

financial data can reveal an individual’s financial stability or 

level of financial responsibility, allowing insurers to offer pricing 

that more closely aligns with the risk profile of the individual 

policyholder.

However, there are limitations when it comes to pricing and 

modifying coverage using alternative data. In automobile 

insurance, variables such as the insured vehicle being driven 

by someone other than the policyholder may have an impact 

on data accuracy and premium calculations. It is therefore 

essential for insurers to ensure that their pricing models are 

robust and transparent, so that customers can understand how 

these variables influence their premiums and affect the overall 

coverage provided. Additionally, customers should be informed 

whether participation in UBI programmes is compulsory.

Furthermore, adding new data dimensions to long-term 

insurance products with straightforward premium rates may 

complicate the premium rate lookup process, making it harder 

for policyholders to understand the factors driving their rates 

and potentially eroding consumer trust and engagement. Thus, 

it may be preferable to adopt a more balanced approach that 

leverages selected, relevant data dimensions while maintaining 

a relatively simple and easy-to-navigate overall premium rate 

structure.

• Marketing and customer experience

The use of alternative data in insurance operations enables 

insurers to engage in marketing targeted at segments that are 

more likely to be interested in their offerings, thus enhancing 

distribution and customer reach while reducing marketing 

costs.

In Hong Kong, the significant proportion of mainland Chinese 

Visitor (MCV) business underscores the need for effective 

cross-boundary data transfer, especially in the context of the 

Greater Bay Area (GBA) development. Hong Kong insurers 

need to be able to access and utilise data on mainland Chinese 

policyholders and their risk profiles in order to provide tailored 

products and services for this customer segment. Seamless 

cross-boundary data sharing enables insurers to better 

understand MCV demographics, behaviours, and risks, and 

develop insurance solutions that cater to the diverse needs 

of the GBA market. This access can also enhance customer 

experience by streamlining the application process, including 

Know Your Customer (KYC) and underwriting procedures, as 

well as improving after-sales services for MCVs.

However, potential ethical concerns associated with targeted 

marketing must be addressed. Unaware of the influence 

of targeted strategies, customers may end up purchasing 

products that are not necessarily in their best interests. Insurers 

should ensure that customers are adequately informed and 

empowered to make decisions that reflect their actual needs.
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1.1.4.4 Common challenges in leveraging 
alternative data for insurance

As alternative data becomes increasingly prevalent, insurers 

must navigate the complexities of leveraging this data in an 

information-rich environment. The following paragraphs 

highlight a few of the common challenges for the insurance 

sector in this respect:

• �Regulatory compliance and ethical considerations

Hong Kong’s Personal Data (Privacy) Ordinance (Cap. 486) 

(PDPO) establishes a stringent framework for data protection 

in both the public and private sectors. The Data Protection 

Principles (DPPs) of the PDPO govern, amongst other things, 

the collection and use of personal data, and emphasise that data 

should only be collected for a lawful purpose directly related to 

a function or activity of the data user, and not to be used for 

any purpose which is not or is unrelated to the original purpose 

of collection, except with the express and voluntary consent 

of the data subject. This can pose challenges for insurers 

engaging in data exchange, due to strict consent requirements 

in using the personal data for a new purpose. Concerns about 

data breaches and security standards can further limit data 

sharing. Insurers must develop secure data sharing procedures 

with third-party entities, such as reinsurers or data providers, to 

ensure compliance with relevant regulations.

There could also be problems with cross-boundary data 

transfer when insurance companies use alternative data from 

other jurisdictions. In such transfers, insurers must assess the 

regulatory implications, ensure strict adherence to relevant 

regulations, seek expert guidance to navigate the complexities, 

and implement robust security measures to safeguard data.

Equally importantly, utilising alternative data in insurance 

requires fairness and transparency. Risk assessment and 

pricing approaches must be statistically sound and non-

discriminatory. Insurers must demonstrate transparency by 

being able to clearly explain to customers and regulators how 

the data is being leveraged in their decision-making processes. 

Failure to uphold these standards can result in regulatory 

sanctions, reputational damage, and customer backlash.

• �Concerns over data quality and quantity

High-quality data is essential for making informed decisions, but 

insurers may struggle with issues of data quality and quantity 

when leveraging diverse data sources. One major issue is the 

prevalence of incomplete or unverifiable data from alternative 

sources, making it difficult to assess data reliability for critical 

tasks like risk assessment and underwriting. Robust validation 

mechanisms and thorough evaluation of the credibility of 

alternative data providers are necessary in such cases.

Furthermore, the fragmentation of significant amounts of 

unstructured data in diverse data sources across different 

systems, formats, and organisations can potentially hinder data 

integration and interpretation. To overcome these challenges, 

insurers need to adopt data management practices such as 

data governance, standardisation, cleansing, and validation. 

They can also leverage advanced technologies like AI and 

ML for the purposes of enhancing data accuracy, identifying 

patterns, extracting valuable insights, and incorporating only 

the most relevant information from the extensive pool of 

insurance data.

• �Concerns over model security and performance risks

Leveraging alternative data through AI and ML models 

in insurance raises security and performance concerns. 

Trustworthy models are essential to prevent bias, errors, and 

unintended consequences that could affect decision-making. 

Model explainability and interpretability are crucial for ensuring 

transparency and regulatory compliance, particularly with 

complex deep learning models.

To maintain fairness and mitigate legal and reputational 

risks, insurance companies must implement robust security 

measures, such as encryption and access controls, while 

addressing data biases through preprocessing and regular 

audits. The integration of large datasets requires substantial 

computational resources, necessitating investment in scalable 

infrastructure and possibly cloud-based solutions.
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Furthermore, managing data inconsistencies and outliers is 

critical for enhancing model performance. Rigorous testing, 

validation, and continuous monitoring will be necessary to detect 

and manage performance risks, especially since alternative 

data sources often lack long-term historical data for thorough 

back testing. Insurers may need to rely on real-time testing 

and validation, deploying models in controlled environments to 

monitor their effectiveness and adapt to model drift.

In summary, organisations in the insurance industry must 

establish clear guidelines for the selection, evaluation, 

integration, and analysis of alternative data sources to maximise 

their benefits and mitigate the associated risks. A comprehensive 

framework should include parameters such as data quality, 

reliability, relevance, consistency, and ethical considerations.

Figure 5 below illustrates a sample framework of the key 

evaluation parameters for alternative data sources19.

19	 Institute of Actuaries of India and India Insurtech Association, Alternate Data Sources, February 2024.

Figure 5 Key evaluation parameters for alternative data

KEY

EVALUATION

PARAMETERS

Data processing

Provide seamless and 
quick access to the data.

Maintain consistency over
different periods for easy

processing and to prevent
discrepancies.

Use a source tech stack that
aligns with the end user’s tech
stack for smooth integration.

Ensure compliance with 
all applicable local and 

International laws.

Source and process data
ethically, ensuring full 
transparency and user 

acknowledgment.

Obtain data from credible, 
reliable sources that are 
unbiased, certified, or 

authentic.

Ensure the tech stack is
reasonable for continuous 

and long-term data processing.

Demonstrate efficacy and
effectiveness in generating

precise predictions.
Data consistency

Underlying technology

Cost involved

Predictive ability

Legal and regulatory
compliance

Ethical aspects

Data credibility and reliability

1.2 A Potential Solution for Data 
Security and Privacy: Federated 
Learning (FL)

ML has been actively explored and implemented in various 

areas of the insurance industry. However, given the sensitive 

nature of the data handled and the competitive landscape of 

the industry, insurers typically approach ML collaboration with 

a cautious and conservative mindset. To address the challenge 

of data security and privacy, a potential solution lies in the 

adoption of federated learning (FL). Hypothetical and real FL 

use cases, along with their problem-solution-impact analyses, 

will be presented in Part Four and Part Five.

FL is a revolutionary branch of AI that enables decentralised 

machine learning, allowing for privacy-preserving data sharing 

across sectors. Unlike traditional ML approaches that require 

centralising data in a single location, FL enables models to 

be trained directly on the devices or servers where the data 

resides. In traditional ML, clients send raw data to a central 
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server for model training. By contrast, FL allows clients to 

send only model update parameters20 to the central server. 

This means that participating insurance companies can 

collaboratively train models without sharing raw customer 

data, and can access additional data sources to enhance 

their models and gain new insights by collaborating with other 

companies and industries. This approach has the potential to 

significantly enhance insurance model accuracy and efficacy, 

improving customer experience and business outcomes. The 

below example illustrates how FL works:

• �Example: FL for pneumonia detection

Imagine three hospitals want to build a machine learning model 

that can detect pneumonia. Each hospital holds private patient 

records, such as X-rays, lab results, and symptoms, but privacy 

regulations prevent this data from being shared externally.

To address this, they adopt FL. Instead of sharing raw patient 

data, each hospital shares only model updates, adjustments to 

the machine learning model’s internal settings that reflect how 

different medical indicators should be weighted.

The process unfolds in the following steps:

1.	 Distribute a base model: A basic machine learning model 

is shared with all participating hospitals. It begins with 

random parameters and must learn which clinical features 

are most predictive of pneumonia.

2.	 Local training with private data: Each hospital trains the 

model locally using its own patient data, such as X-rays, lab 

results, and symptoms. Based on clinical outcomes:

20	 In the context of federated learning (FL), a parameter refers to the numerical values within a machine learning model that are adjusted during training. These parameters, such 
as weights and biases in neural networks, dictate how the model makes predictions.

•	 Hospital A reduces the weight of “cough” as it proves 

unreliable.

•	 Hospital B increases the weight of “fever” due to 

strong correlation.

•	 Hospital C boosts the importance of “cloudy chest 

X-ray” as a key indicator.

These updates are derived from private datasets but do not 

expose any raw patient information.

3.	 Share model updates (mathematical adjustments 

in weightings and parameters) only without sharing 

raw patient data: Hospitals send back only the changes 

made to the model’s internal settings, such as “decrease 

weight for cough” and “increase weight for fever”, without 

exposing any raw patient data.

4.	 Aggregate improvements: A central server aggregates 

the updates from all hospitals. Contributions from hospitals 

with larger datasets or more accurate results may carry 

more weight in the final model.

5.	 Generate insights without exposing data: The refined 

model (Global Model) captures collective medical insights, 

such as which symptoms are most predictive of pneumonia, 

without accessing or exposing any hospital’s patient data.

6.	 Share the improved model: The Global Model is 

redistributed to all hospitals, enabling each to benefit from 

shared intelligence while maintaining full control over their 

own data.
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As shown in Figure 6, FL enabled the three hospitals to 

co-develop a highly accurate pneumonia detection model 

without ever sharing raw patient data. Each hospital trained 

the base model on its own X-rays, lab results, and symptom 

records, then contributed only mathematical weight updates. 

Figure 6 Example of Federated Learning for developing a Global Model for pneumonia detection
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FL enabled the three hospitals to co-develop a highly 
accurate pneumonia detection model (Global Model) 

without ever sharing raw patient data. 

Hospital B
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By aggregating these privacy-preserving adjustments, the 

Global Model captures collective medical insights such as the 

true predictive power of fever and cloudy chest X-rays while 

safeguarding patient confidentiality.

The use of alternative data sources in the insurance industry 

often raises significant concerns about data privacy and ethical 

use, creating a challenge for insurers who need to comply 

with stringent data privacy regulations like the Personal Data 

(Privacy) Ordinance (Cap. 486) (PDPO) in Hong Kong and 

the GDPR. FL offers a solution to this challenge. By enabling 

model training without the need to centralise sensitive data, it 

helps insurers address the privacy and compliance concerns 

associated with alternative data. Furthermore, its scalable and 

efficient nature can be particularly beneficial for processing 

and extracting insights from the large, diverse alternative data 

sources that insurers often work with. Many of these alternative 

data sources may be too costly or impractical to centralise, 

making a decentralised approach like FL essential. The key 

benefit of combining FL and alternative data is the ability to 

unlock valuable insights and drive innovation in a scalable and 

efficient manner, while also addressing critical privacy and 

compliance concerns for the insurance industry.
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1.2.1 What Challenges Can FL 
Potentially Solve?

A typical FL platform enables multiple parties to jointly train a 

ML model on their decentralised data, thus addressing data 

security, model security, and technological constraints when 

utilising alternative data and sharing data with third parties. As 

shown in Table 4 and elaborated upon in the following sections, 

an FL platform can potentially solve challenges such as data 

privacy, data quantity, and model security issues.

Table 4 What challenges can a typical FL platform potentially solve?

A.	 Regulatory compliance and ethical considerations

Challenges of utilising alternative data Addressed by a typical FL platform?

1. Data privacy

Alternative data sources often contain personal information 
that raises privacy concerns. Regulatory requirements, such 
as GDPR and PDPO, impose restrictions on the collection 
and use of personal data.

Yes.

FL allows collaborative models to be trained on 
decentralised data. This preserves data privacy and helps 
comply with regulatory requirements. Additionally, the 
FL platform often integrates advanced techniques such 
as data anonymisation and encryption to enhance data 
privacy. However, under the PDPO, encrypted data or data 
that has not yet been fully anonymised may still constitute 
“personal data”, so long as it is reasonably practicable to 
ascertain the identity of an individual therefrom or when 
combined with other information held by the data user. 
Insurance companies should therefore implement a robust 
set of data protection measures to ensure responsible 
handling of personal data, including strict access controls 
and audit trails, and where applicable, obtain explicit, 
informed consent from customers for the intended use of 
the data.

2. Cross-boundary data transfers

When utilising alternative data in insurance, there are 
cross-boundary data transfer issues, such as varying data 
protection regulations, consent requirements, and data 
localisation rules.

Partially.

FL localises data and reduces security risks by only 
exchanging model updates instead of raw data. However, 
insurance firms must take additional measures to address 
jurisdictional differences, such as conducting a thorough 
assessment, ensuring adherence to regulations, seeking 
expert guidance, and implementing robust security 
measures.

3. Fairness and transparency

There is a risk of bias or discrimination if the data sources 
or algorithms used to analyse the data are not carefully 
monitored and regulated.

Partially.

The FL platform may evaluate the contributions of 
the training results to assess the fairness of the data 
sources. Insurance companies should ensure that the 
data and analytics they use for decision-making clear 
an extremely high bar in terms of fairness, transparency, 
and explainability. They have a fundamental obligation to 
their customers and regulators to demonstrate a solid, 
unbiased basis for their underwriting decisions. To avoid 
unfair treatment of customers, it is crucial for insurers to 
actively monitor and address any potential biases or unfair 
outcomes that may arise from the platform’s analytics.
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Table 4 What challenges can a typical FL platform potentially solve?

B.	 Data quality and quantity

Challenges of utilising alternative data Addressed by a typical FL platform?

4. Data quality

Diverse datasets may come in various formats, making it 
challenging to integrate and analyse the data effectively. 
If the alternative data sources have missing data or large 
variances, they can compromise the output of the model.

No.

FL does not inherently address all quality challenges, but 
the platform develops standardised data formats and 
protocols to facilitate data integration and interoperability. 
While FL employs data processing and feature engineering 
techniques such as normalising data, removing outliers, 
and inputting missing values to enhance data quality, it is 
important for insurers to prioritise local data preprocessing 
before engaging in FL to ensure optimal results. By 
conducting the necessary preprocessing steps, insurers 
can address specific data quality concerns and improve 
the overall effectiveness of FL in their operations.

5. Data quantity

The cardinal principle of data minimisation emphasises 
that only a sufficient and relevant amount of personal data 
should be collected for the intended purpose. This can lead 
to limited or insufficient data for analysis and decision-
making processes.

Yes.

FL enables distributed data processing and model 
compression. This allows for efficient analysis and 
interpretation without the need for centralised data storage 
and reduces the burden of transferring large amounts of 
data. Data providers should shoulder the responsibility 
of implementing the principle of data minimisation while 
ensuring they provide the efficient and relevant data 
necessary for accurate model training.

6. Data credibility and reliability

Not all alternative data sources provide verified information 
or disclose their underlying sources, which may result in 
potentially misleading results.

Not applicable.

Data providers should bear the responsibility of ensuring 
that the datasets are credible and reliable. This involves 
evaluating the reputation, accuracy, and track record of 
the sources providing the alternative data.

7. Data relevancy

Many alternative data sources may not align with 
insurance-specific use cases. Filtering out non-relevant 
data can be a challenging exercise for insurance players.

Not applicable.

The FL platform does not have functions that could 
filter non-relevant data. Insurance firms should develop 
effective data preprocessing and filtering techniques 
to incorporate only relevant and useful data into their 
analysis. Data providers who fail to provide relevant data 
may face limitations in their ability to participate as data 
contributors.
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Table 4 What challenges can a typical FL platform potentially solve?

C.	 Model security and performance risks

Challenges of utilising alternative data Addressed by a typical FL platform?

8. Model security

Model trainings that involve diverse datasets may have a 
higher risk of unauthorised access or malicious attacks.

Yes.

The FL platform incorporates robust defence mechanisms 
to prevent insider threats or back door risks. The database 
is fully managed by the client at their local/dedicated 
premises, and data is encrypted.

9. Model performance and efficiency

Analysing a large volume of data requires substantial 
processing power and computational resources. These 
challenges can impact the overall performance and 
efficiency of the model process.

Partially.

FL has the potential to address model performance and 
efficiency by facilitating the analysis and interpretation 
of large-scale decentralised datasets and incorporating 
features to optimise computation time and reduce 
communication costs. However, there are limitations on 
the ML algorithms that can be used in the FL context, 
which may result in suboptimal algorithm choices. Insurers 
should continuously evaluate the performance of selected 
ML algorithms within the FL framework for improvement.

10. Lack of historical data for back testing

The lack of data archives or historical data in many 
sources poses challenges for back testing the long-term 
effectiveness of data usage.

Not applicable.

To mitigate this risk, insurance companies can explore 
alternative approaches such as conducting real-time 
testing and validation of models using current data.

• Enhance data privacy and security

FL trains models locally on devices or servers, significantly 

reducing privacy risks by keeping sensitive data on-site and 

sharing only encrypted model updates. This decentralised 

approach enhances protection against data breaches and 

unauthorised access, ensuring that data remains under the 

control of participating organisations. FL aligns with the GDPR’s 

data minimisation principle by keeping raw training data 

decentralised and preventing unauthorised reuse of personal 

information. In Hong Kong, the PCPD, in its Guidance on 

Ethical Development and Use of AI, identifies FL as one of the 

possible techniques that can minimise the amount of personal 

data in AI model training by avoiding unnecessary data sharing. 

However, insurance companies must ensure compliance 

with relevant regulatory requirements when leveraging FL in 

their operations. Throughout the FL implementation process, 

it is recommended that insurance companies undertake a 

comprehensive review of the regulatory landscape and work 

closely with legal and compliance teams.

• Overcome data quantity challenges

Insurance companies in Hong Kong may face limitations such 

as limited bandwidth, network latency, and heterogeneous 

computing resources when utilising a variety of data sources. 

A typical FL platform accommodates these constraints by 

allowing local model training on individual devices or servers. 

This decentralised approach leverages existing infrastructure 

and computing resources, enabling participants to train models 

effectively within their technological limitations. It overcomes 

data quantity challenges by enabling collaboration and the 

pooling of diverse datasets without sharing raw data, leading 

to a larger and more diverse dataset for model training.
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• �Mitigate model security and performance risks

An FL platform may incorporate secure aggregation techniques 

to combine model updates from multiple participants. These 

techniques leverage cryptographic protocols to ensure that 

the aggregated model remains secure and protected during 

the aggregation process. Additionally, FL enables collaborative 

model training with diverse datasets, enhancing model 

performance by capturing a broader range of data patterns 

and insights. This approach also supports iterative model 

improvement through continuous collaboration and updates, 

allowing for ongoing refinement and validation.

1.2.2 Benefits of FL for the Insurance 
Industry

Despite its promise, it is essential to recognise that FL is 

still a nascent and developing field. The tangible benefits 

and long-term return on investment (ROI) associated with 

its implementation can vary widely based on specific use 

cases, industry contexts, and the nuances of implementation. 

Emerging research has documented qualitative advantages 

and successful use cases of FL across various sectors, 

including healthcare, financial services, and IoT applications.

As FL has the capacity to address the challenges associated 

with leveraging diverse data sources, including alternative 

data sources, it has the ability to unlock the potential of these 

valuable data assets, translating them into a myriad of benefits 

for the insurance industry throughout the value chain. The 

following sections elaborate on some of these benefits.

• Improved risk assessment

FL enables insurers to utilise a broader range of data points, 

leading to more precise risk evaluations. By enhancing insurers’ 

ability to identify potential risks early in the underwriting phase, 

it allows for proactive mitigation of issues before they escalate. 

Research has found that using FL can improve loss event 

prediction by from 30% to 87.5% while also addressing privacy 

concerns21.

21	 Society of Actuaries Research Institute, Federated Learning for Insurance Companies, February 2024.

In addition to identifying patterns across groups of customers, 

FL also has the potential to be applied to individual risk 

assessment. This can be done by adapting the global model 

through fine-tuning, and refining it with individual-specific data. 

As new data becomes available, the continuous learning of the 

models can lead to adjustments in the risk assessments for 

individuals, aligning the model better with an individual’s specific 

situation. The key lies in striking the right balance between the 

theoretical potential of FL and its practical implementation.

• Enhanced customer experience

FL enables insurance companies to leverage insights from 

various data sources to enhance customer experience 

throughout the sales process journey, from marketing to post-

sales activities.

Prior to sales, FL can harness big data to gain insights into 

potential customers’ behaviour and preferences in order to 

target marketing campaigns at the right audience, increasing 

engagement and satisfaction while offering services that are 

closely aligned with the needs of specific customer groups. It 

can also strengthen channel relationships by enabling insurers 

to train data analytics models with their broker partners, helping 

them to track the status of applications, manage compensation 

and commissions, and monitor progress towards business 

goals.

In terms of underwriting, by using FL to analyse data from 

across different nodes, such as real-time data collected from 

smartphone apps, insurers can also provide tailor-made 

products that reflect a customer’s unique circumstances on 

the basis of a better understanding of individual risk profiles 

and preferences.

Finally, FL boosts data availability by means of its decentralised 

training on diverse datasets and its real-time updates, which 

enhance fraud detection and facilitate faster, more reliable 

settlements.



023

Part One: Alternative Data for the Insurance Industry

Whitepaper on Federated Learning / 2025

• Improved operating efficiency

By utilising FL, insurers can leverage decentralised data sources 

to automate various tasks without compromising data privacy, 

thus streamlining traditional operations such as underwriting 

and claims processing. Automated underwriting processes 

lead to faster turnaround times, enabling insurers to handle a 

larger volume of applications in a shorter period. This results in 

a reduction in operational costs associated with manual labour, 

paperwork, and data processing.

FL also enhances the efficiency of data analytics. For one thing, 

it facilitates local data processing, thereby minimising the need 

for costly centralised infrastructure and reducing the risk of 

data breaches during transfer. Also, it allows for the continuous 

improvement of models by using real-time data from personal 

devices such as smartphones or wearable devices, leading to 

the development of more accurate and up-to-date models that 

can adapt to changing market conditions, emerging risks, and 

evolving customer behaviours.

• Innovation and competitive edge

By harnessing the potential of FL, insurers can unlock novel 

avenues for product development, driving innovation and 

staying at the forefront of a dynamic marketplace.

When exploring new insurance products, insurers can 

collaborate with various stakeholders, such as policyholders, 

data providers, and even industry partners, without the need to 

centralise or share sensitive data. By accessing distributed data 

through FL, insurers can gain a comprehensive understanding 

of customer preferences, behaviour patterns, and emerging 

trends.

For instance, insurers can use FL to analyse data from 

connected devices in the IoT ecosystem that can reveal 

crucial information about risks associated with smart homes, 

connected cars, or wearable devices. Armed with these 

insights, insurers can identify untapped market needs and gaps 

in their offerings, using these to develop innovative policies that 

provide coverage against emerging risks, such as cyber threats 

to smart homes or personalised health insurance plans based 

on wearable device data.
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This part first introduces the fundamentals of FL, including 

its classification, existing frameworks, and applications. It 

then discusses different aspects of risk management and 

regulatory compliance relevant to FL implementation. As 

FL involves multiple stakeholders and sensitive data, it is 

important to address risks such as data privacy concerns, 

model accuracy, and security vulnerabilities. Understanding 

both the technical aspects of FL and the necessary risk 

management and compliance measures is important in 

promoting its ethical and responsible implementation.

2.1 What is Federated Learning 
(FL)?

The initial concept of FL can be traced back to a paper 

published by Google researchers in 201622. It recognised that 

in many scenarios, data is distributed across multiple devices 

(edge nodes), with privacy concerns, network limitations, 

or regulatory constraints making it difficult or impractical to 

aggregate the data in a central location.

Federated Learning enables 
collaborative machine learning while 
safeguarding data privacy and security.

FL presented the novel idea of decentralising the learning 

process, allowing each individual or organisation (data node) to 

train a local model using its own data. Instead of sharing raw 

data, the central server exchanges only the model’s updates. 

Figure 7 provides a visual representation of this process, 

showing the flow of the exchange of model updates between 

the local devices and the central server.

22	 Jakub Konečný et al., Federated Learning: Strategies for Improving Communication Efficiency, 2016.
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Figure 7 Working flow of federated learning
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Typically, the FL framework process consists of the following 

eight steps:

1.	 Data localisation: In an FL setup, data remains on the 

local devices or servers where it is generated. Each 

participant, such as a device or organisation, holds its own 

dataset without transferring it to a central server.

2.	 Model initialisation: A global model is initialised on the 

central server. This model serves as the starting point for 

training and is typically based on prior knowledge or a pre-

existing model structure.

3.	 Local training: Each participant trains the global model 

on its local dataset. This involves running multiple iterations 

of model training using local data while ensuring that data 

does not leave the device.

4.	 Model update collection: After local training is complete, 

each participant sends its model updates to the central 

server, but not the raw data. These updates represent the 

learned information from the local datasets.

5.	 Aggregation of updates: The central server collects the 

model updates from all participants and aggregates them 

to create a new global model.

6.	 Model distribution: The newly aggregated global model 

is then sent back to the participants. Each participant 

replaces its local model with the updated global model, 

which incorporates learnings from all participating devices.

7.	 Iteration: Steps 3 to 6 are repeated for several rounds, 

allowing the model to improve over time until certain 

convergence criteria are met, such as a predefined number 

of iterations or a satisfactory level of model performance.

8.	 Final model evaluation: Once the training process 

is complete, the final model is evaluated to assess its 

performance.

2.1.1 Classification of FL

Various approaches to classifying FL are available. The following 

discussion introduces two classification approaches, based on 

participant entities and data distribution characteristics.
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From the perspective of collaboration among participants, 

FL can be categorised into two main types: cross-device 

federated learning (CDFL) and cross-silo federated learning 

(CSFL). CDFL is often employed in scenarios where data is 

distributed across individual devices, such as smartphones, 

tablets, smartwatches, and smart thermostats. CSFL involves 

collaboration among organisations or institutions that maintain 

their own data silos, such as hospitals and banks.

From the perspective of the distribution characteristics of 

data, FL can be classified into three categories: horizontal 

federated learning (HFL), vertical federated learning (VFL), and 

federated transfer learning (FTL). HFL pertains to scenarios 

Table 5 Comparison of CDFL and CSFL

Aspect Cross-device federated learning (CDFL) Cross-silo federated learning (CSFL)

Client entity Individual devices 

(e.g. smartphones, wearables)

Organisations or companies 

(e.g. hospitals, banks)

Data distribution Generated locally and remains decentralised

Client scale A large number 

(up to a million clients)

A small number 

(from two to 100 clients)

Bottlenecks High communication cost and low efficiency Heterogeneous data 

(High variability of data types and formats)

Use cases •	 Next-word prediction

•	 Personalised recommendations

•	 Health monitoring

•	 IoT applications

•	 Disease diagnosis and prediction, medical 

image analysis, drug discovery

•	 Credit risk assessment, fraud detection, 

market prediction

•	 Smart city development

Table 6 Comparison of HFL, VFL, and FTL

Aspect
Horizontal federated 

learning (HFL)

Vertical federated 

learning (VFL)
Federated transfer learning (FTL)

Data distribution Differ in sample space Differ in feature space Differ in both sample and feature 

spaces

Scenarios Cross-device/Cross-silo Cross-silo Mostly cross-silo

Exchanged items Model parameters Intermediate results Intermediate results

where multiple data partners collaboratively train a model using 

the same feature space, meaning the data consists of similar 

types of information or characteristics, such as standardized 

tumor images from different hospitals. VFL, on the other hand, 

involves scenarios where data sources have different types 

of features regarding the same set of samples, such as the 

health insurance records and hospital data of the same client. 

FTL focuses on the transfer of knowledge or models across 

different FL setups.

To provide a comprehensive overview and facilitate comparison, 

these two classification approaches have been summarised in 

Table 5 and Table 6.
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Table 7 Application of FL in various areas

Areas Description Examples

Finance FL enables collaboration among financial 
institutions or online platforms to train 
robust fraud detection models without 
sharing sensitive transaction data.

•	 PayPal has developed a FL platform which allows 
multiple businesses to train a model that can 
detect fraudulent transactions without sharing their 
underlying data23. 

•	 Amazon has also developed a FL platform allowing 
multiple e-commerce businesses to train a model 
that can detect fraudulent orders24.

Healthcare Healthcare institutions can use FL to 
enhance predictive models for disease 
outcomes, such as predicting patient 
readmissions or identifying individuals at 
risk of developing certain conditions. FL 
can also support personalised treatment 
recommendations.

•	 The Clara platform by NVIDIA enables secure 
collaboration among healthcare institutions for AI 
model training in medical imaging, genomics and 
drug discovery25. 

•	 Project InnerEye by Microsoft develops AI tools for 
analysing 3D medical images26. 

•	 The Google Health Studies app utilises FL to facilitate 
respiratory illness research by collecting user health 
data while ensuring privacy27. 

Smart Cities FL can be used for anomaly detection in 
IoT devices, where the global model learns 
from the local anomalies detected by each 
device, improving the overall accuracy of 
the anomaly detection system.

•	 Google Maps utilises FL to improve accuracy in 
predicting traffic congestion and travel times by 
leveraging decentralised user data, providing real-
time updates to users28.

•	 In 2023, Bosch and the Austrian Institute of 
Technology launched a research collaboration to 
explore the application of FL to a wide range of 
Bosch products, particularly in the area of Internet of 
Things (IoT) applications29. 

Natural 
Language 

Processing 
(NLP)

FL can enhance NLP tasks, such as 
improving the accuracy of sentiment 
analysis, language translation, and chatbot 
development, without accessing user 
data directly. Furthermore, FL-based 
LLM training frameworks can incorporate 
additional privacy-enhancing techniques to 
further strengthen the protection of data 
privacy and security during the training 
process.

•	 Gboard, a keyboard app developed by Google, 
utilises FL to refine neural network language models 
for better text prediction and translation accuracy 
without exporting sensitive user data to servers30. The 
FL environment gives users greater control over their 
data and simplifies the task of incorporating privacy 
by default with distributed training and aggregation 
across a population of client devices.

23	 TWIML AI Podcast. Applied AI/ML Research at PayPal with Vidyut Naware, accessed 5 August 2025, https://twimlai.com/podcast/twimlai/applied-ai-ml-research-at-paypal-with-
vidyut-naware/.

24	 Amazon, Amazon Fraud Detector Detect Online Fraud Faster with Machine Learning, accessed 5 August 2025, https://aws.amazon.com/fraud-detector/.
25	 NVIDIA. 2025. NVIDIA Clara: AI-powered Solutions for Healthcare, accessed 5 August 2025, https://www.nvidia.com/en-us/clara/.
26	 Microsoft Research, Medical Image Analysis – Project InnerEye, accessed 5 August 2025, https://www.microsoft.com/en-us/research/project/medical-image-analysis/.
27	 Jon Morgan and Paul Eastham, Advancing health research with Google Health Studies, December 2020, accessed 5 August 2025, https://blog.google/technology/health/google-

health-studies-app/.
28	 Eric Miraglia, Privacy that works for everyone, May 2019, accessed 5 August 2025, https://blog.google/technology/safety-security/privacy-everyone-io/. 
29	 BOSCH, Research Project Federated Learning, July 2023, accessed 5 August 2025, https://www.bosch.com/research/news/federated-learning/.
30	 Ziteng Sun, Improving Gboard Language Models via Private Federated Analytics, Google Research Blog, April 2024, accessed 5 August 2025,  

https://research.google/blog/improving-gboard-language-models-via-private-federated-analytics/.

2.1.2 Applications and Emerging 
Trends

Increasing concerns over customer privacy and data protection 

have seen companies across various industries recognise the 

importance of adopting advanced technologies that preserve 

data privacy while enabling collaborative data analysis. Table 7 

below summarises applications of FL in various areas.
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2.1.3 Existing Open-source 
Frameworks and Their Limitations

There are several open-source FL frameworks. Popular ones 

include TensorFlow Federated (TFF), FedML, FATE (Federated 

AI Technology Enabler), Flower, FederatedScope, FLUTE 

(Federated Learning Utilities and Tools for Experimentation), 

and FedScale. While they all share the key features of a 

FL framework, including client-side training, server-side 

aggregation and communication, as well as local simulation, 

they differ in other features, such as types of ML models and 

libraries supported, ease of customization, privacy protection 

methods, readiness for real-world use, and compatibility with 

different devices and operating systems. Table 8 provides a 

comparison of these frameworks31. 

As FL is a relatively new concept, most frameworks are still 

under constant development. A framework that demonstrates 

higher project maturity and offers comprehensive 

documentation is often viewed as more reliable and better 

suited for long-term adoption.

31	 Alex Braungardt, Flower & PySyft & Co: Federated Learning Frameworks in Python, Medium, 2023, accessed 5 August 2024, https://medium.com/elca-it/flower-pysyft-co-federated-
learning-frameworks-in-python-b1a8eda68b0d. 

Open-source FL frameworks have democratised the 

development and deployment of FL solutions, providing a 

foundation for researchers and entrepreneurs to collaborate, 

experiment, and build on existing FL technology. However, 

like any emerging technology, open-source FL frameworks 

come with their own set of challenges, which include:

• Limited security modules

When evaluating open-source FL frameworks, it is important 

to consider their privacy and security features. The origin 

and nature of these frameworks and platforms vary, with 

some developed by scientific research projects and others 

by commercial entities. Not all are supported by professional 

teams dedicated to security technology, meaning they are 

vulnerable to potential attacks. Given the importance of data 

and model protection in FL and the evolving nature of attacks, 

basic security modules are insufficient and there must be a 

proactive and comprehensive approach to security design and 

implementation.

Table 8 Details of FL frameworks

Name Release Source Pros Cons

FATE 

(2019)

Webank •	 Suited for commercial use, 

with many FL algorithms

•	 Difficult to extend

TFF 

(2019)

Google •	 Easy to use and flexible •	 Limited to TensorFlow/

Keras

Flower 

(2020)

University of Oxford •	 Easy to use and flexible •	 Limited extra features

FedScale 

(2021)

University of Michigan •	 Scalable and extensible •	 Complex implementation

FedML 

(2022)

FEDML Nexus AI •	 Easy to use and flexible •	 Limited performance 

optimizations

Federated Scope 

(2022)

Alibaba •	 Convenient usage and 

flexible customization

•	 High communication costs

FLUTE 

(2022)

Microsoft •	 High-performance FL 

simulations at scale

•	 Difficult to extend
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• Scalability challenges

Open-source FL frameworks must have a scalability that 

enables them to bridge the gap between scientific research 

and practical application. Many open-source frameworks 

neglect to optimise communication channels for large-scale 

FL networks, leading to scalability challenges. FL platforms 

must incorporate robust defence mechanisms and efficient 

communication protocols. They should also include intelligent 

mechanisms for upload and download requests, to ensure that 

resource utilisation is fair and efficient.

• Lack of module support

Many open-source FL frameworks face significant challenges 

due to delays in updates and lack of comprehensive module 

support. These issues may complicate their integration with 

existing libraries for ML, deep learning, and Large Language 

Models (LLMs), such as ChatGPT and DeepSeek. This 

limitation restricts the ability of FL to fully leverage the potential 

of available data.

By incorporating the lessons learned from analysing existing 

FL frameworks, the FL platform proposed in this white paper 

will integrate privacy-enhancing technologies (PETs) such 

as differential privacy and secure multi-party computation in 

order to effectively address privacy and security concerns. A 

confidential identity matching module (CIMM) will be developed 

to secure data matching (identity matching or feature matching) 

across different data sources. The platform also includes a fast-

training strategy module (FTSM) designed to enhance training 

efficiency, thereby lowering scalability costs at the business 

level. Finally, the platform also focuses on robust modular 

architectures and provides a variety of algorithms, allowing for 

easy integration and customisation by different companies. The 

features of the proposed platform are explained in detail in Part 

Three of this paper.

2.2 Risk Management and 
Regulatory Compliance

FL has compelling advantages for preserving data privacy, but it 

also introduces complexities that demand careful consideration 

from organisations, making adherence to relevant regulations 

and mitigation of associated risks imperative. This chapter 

concentrates on the Hong Kong context, providing local 

insurers with insights into effectively leveraging FL in their data 

management practices in ways that comply with the specific 

risk and regulatory landscape of Hong Kong. This section 

primarily explores the risks and challenges associated with FL, 

as well as solutions and mitigation strategies.

2.2.1 Risk Assessment in FL

Common risks associated with FL can be classified into 

three categories: data privacy risks, model security risks and 

performance risks. Data privacy risks involve threats to the 

confidentiality and protection of sensitive data, while model 

security risks refer to vulnerabilities in the security of FL 

models. Performance risks relate to issues that can affect the 

effectiveness and efficiency of the models. Since the application 

of FL in the insurance industry is still in its nascent stages, it is 

currently not feasible to assess all the potential risks associated 

with its implementation.

2.2.1.1 Data privacy risks

During the FL process, data is aggregated across multiple 

devices or servers. This introduces the risk of data leakage and 

unintentional exposure of sensitive information. Collaboration 

between different entities or organisations that own the data 

sources elevates the risk of unauthorised access by malicious 

actors within these organisations, potentially leading to misuse 

of personal or confidential information.

Various solutions can be implemented to address these risks, 

including secure data storage practices, robust authentication 

mechanisms, and clear data usage agreements. The following 

table summarises the risks identified and the associated 

solutions.
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Table 9 Summary of data privacy risks of FL and solutions

Data Privacy Risks Solutions

Data leakage •	 Secure data storage: Use secure data centres, encrypt data at rest, have access 

controls in place, and carry out regular data backups.

•	 Secure communication channels: Implement encryption protocols like Transport 

Layer Security (TLS) for data transmission.

•	 Data minimisation: Minimise the amount of sensitive data shared or accessed during 

the FL process by techniques such as data anonymisation and aggregation.

Unauthorised access •	 Robust authentication: Implement multi-factor authentication (MFA) to ensure that 

only authorised individuals can access the data.

•	 Role-based access controls (RBAC): Grant access based on job roles and 

responsibilities.

•	 Data usage agreements: Establish clear data usage agreements between 

participating entities or organisations, outline the permissible use of data, restrictions 

on data sharing, and protocols for handling and disposing of data after the FL 

process.

•	 Data loss prevention: Deploy data loss prevention solutions to monitor and prevent 

unauthorised data transmission.

•	 Monitoring and logging: Implement robust monitoring and logging systems to track 

access to sensitive data and analyse logs for suspicious activity.

•	 Regular access reviews: Conduct regular access reviews and audits to ensure that 

access privileges are current and appropriate.

2.2.1.2 Model security risks

An FL framework can be attacked by adversaries, especially 

if its architecture and parameters are insufficiently protected.

For clients, server trustworthiness may be an issue, as a 

curious or malicious server could inspect uploaded data and 

infer private information from it. Expanded client involvement 

also introduces the potential for malicious actors to manipulate 

the training process. For example, adversaries can pose as 

honest clients and introduce erroneous updates to maliciously 

influence the training model’s performance.

When aggregating parameters from clients, there is a risk 

that a server may leak information during transmission, as 

communication channels may be vulnerable to eavesdropping 

by unauthorised entities.

The table below summarises some common types of attack 

and defence strategies in the context of FL.
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Table 10 Summary of common security attacks in FL and defence strategies

Attacks Description Defence Strategies

Data poisoning Injecting misleading data into the training 

set, e.g. flipping labels

Anomaly detection: A proactive strategy that 

utilizes analytical and statistical methods to 

identify and filter out malicious occurrences that 

deviate from expected patterns or activities.

Robust aggregation: Aimed at mitigating the 

influence of malicious model updates, serving 

as a defence against poisoning and backdoor 

attacks.

Model poisoning Causing the global model to behave 

undesirably by manipulating the model’s 

updates

Robust aggregation: Also effective here as 

it helps in mitigating the effects of malicious 

updates.

Backdoor attack Inserting a hidden trigger into a trained 

model enabling attackers to exploit it later by 

activating backdoor behaviour

Pruning: By reducing the model’s size through 

selective neuron removal, this can potentially 

remove or mitigate the effects of backdoor 

attacks.

Robust aggregation: Can help in detecting and 

neutralizing backdoor attacks in model updates.

Evasion attack Altering the input samples to deceive the 

model into producing incorrect outputs

Anomaly detection: Can detect unusual inputs 

that might be attempts to evade the model’s 

normal operation.

Attribute inference 

attack

Deducing sensitive characteristics of 

individuals by analysing the outputs or 

behaviour of a model

Differential privacy: Introduces noise to the 

data, making it hard to infer specific details about 

individuals. 

Multi-party computation: Ensures privacy by 

distributing computation, reducing the risk of 

attribute inference.

Membership 

inference attack

Deducing specific data points of the training 

dataset, breaching privacy by revealing if the 

model ‘memorised’ particular instances

Differential privacy: Helps to mask whether 

specific data points are included in the dataset.

Homomorphic encryption: Allows operations on 

encrypted data, thus protecting the training data 

from being inferred.

GAN 

reconstruction 

attack

Utilising Generative Adversarial Networks to 

reconstruct sensitive or private data used to 

train the model

Differential privacy: By adding noise, it makes 

reconstruction of individual data points more 

difficult.

Homomorphic encryption: Operations on data 

can be performed without revealing the data 

itself, preventing reconstruction.
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Attacks Description Defence Strategies

Model extraction 

attack

Extracting the parameters, architecture, or 

intellectual property of a trained machine 

learning model to replicate or gain 

unauthorised access to its functionality

Homomorphic encryption: Protects model 

internals by allowing computations without 

exposing the model’s parameters or structure.

Multi-party computation: Distributes the model 

across multiple parties, making it harder to 

extract the complete model without cooperation 

from all parties involved.

Table 11 Summary of performance challenges and strategies

Performance Challenges Issues Strategies

Data heterogeneity Variability in data quality and 

representativeness may bias 

models.

Data preprocessing and normalisation: 

Standardise datasets and address quality issues, 

such as by engineering numeric features to 

capture nonlinear relationships, grouping infrequent 

categories for high-cardinality variables, creating 

data dictionaries to document types, units, and 

scaling (e.g. kilometres vs. miles), and using natural 

language processing (NLP) to extract insights from 

unstructured data and convert it into structured 

formats.

Disproportionate data 

contributions lead to inaccurate 

predictions

Assessment and contribution feedback: Adjust 

learning rates based on data quality.

Communication and 

computation efficiency

Increased clients and data 

volume strain bandwidth and 

increase latency.

Model optimisation: Use techniques such as 

stochastic gradient descent (SGD) and adaptive 

algorithms.

High communication costs 

affect overall performance.

Communication optimisation: Apply model 

compression, quantisation, and differential updates.

Federated optimisation 

challenges

Traditional algorithms may 

not be suitable for distributed 

settings.

Use specialised techniques: Implement federated 

averaging and secure aggregation to handle non-IID 

data.

2.2.1.3 Performance challenges

FL faces several performance challenges that can affect 

model accuracy and efficiency.

The following table summarises the key performance 

challenges, associated issues, and potential strategies for 

improvement.
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2.2.2 Compliance and Regulations

To effectively leverage FL technology while mitigating the 

above risks, insurers are encouraged to proactively engage 

with a robust set of regulatory expectations. These include 

compliance with requirements related to: (i) data protection 

and privacy, (ii) cybersecurity, (iii) governance and control, 

(iv) outsourcing risk, and (v) fair treatment of customers. 

Each of these areas is crucial for the responsible deployment 

of FL technologies.

In addition to general regulatory requirements, global 

standards are increasingly referenced as best practice within 

the insurance sector for managing the risks associated 

with advanced technologies. The International Association 

of Insurance Supervisors (IAIS), representing insurance 

regulators globally, highlights the ongoing relevance of its 

Insurance Core Principles (ICPs) in managing AI-related 

risks. Published in July 202532, its application paper on 

AI supervision reiterates that insurers remain responsible 

for understanding and managing these systems and 

their outcomes. The paper emphasizes a risk-based and 

proportional approach, focusing on four key areas of 

governance and risk management that require particular 

attention: governance and accountability, robustness, 

safety and security, transparency and explainability, and 

fairness, ethics, and redress.

By exercising due diligence and adopting best practices, 

insurers can effectively leverage FL to safeguard personal 

data while ensuring alignment with applicable laws and 

regulations.

The following overview highlights key compliance 

considerations and is intended as a general guide to potential 

regulatory implications, rather than a comprehensive legal 

analysis.

2.2.2.1 Data protection and privacy

FL is a ML and BDA approach that may present privacy-

related risks and dangers, including:

32	 IAIS, Application Paper on the supervision of artificial intelligence, July 2025.

•	 Ubiquitous data collection that may infringe individual 

privacy

•	 Probabilistic models that can lead to inadequate reasoning 

and ambiguity as to whether data is authentic or fake

•	 The potential for algorithmic discrimination and bias

•	 Lack of transparency around how data is being used and 

applied

•	 Unpredictable or unintended uses of data over time

•	 Risks of poor data quality and the production of false or 

misleading information

•	 Concerns around plagiarism, profiling, and the re-

identification of individuals

•	 Potential for unfair applications and the exploitation of data 

for wrongdoing

Organisations implementing FL should carefully assess the 

nature of the data involved and ensure compliance with 

relevant data protection laws and regulations, including 

obtaining appropriate consent for its use, anonymising or 

pseudonymising data when necessary, and implementing 

security measures to protect the privacy of individuals 

contributing to the FL process. The following discussion 

provides an overview of the legal and regulatory landscape 

surrounding data protection and governance that 

organisations should pay attention to.

• The Six Data Protection Principles

The Personal Data (Privacy) Ordinance (Cap. 486) (PDPO) 

is a privacy law in Hong Kong that governs the collection, 

handling, and use of personal data by both private and 

public sectors. It sets out six Data Protection Principles 

(DPPs) that organisations must comply with when handling 

personal data. The DPPs cover the entire life cycle of 

personal data in FL, and are summarised in Table 12:
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Table 12 The Six Data Protection Principles

No. Principle Description

1 Collection Purpose and 

Means

Personal data must be collected in a lawful and fair way, for a purpose 

directly related to a function/activity of the data user. Where personal data 

is collected from the data subjects directly, all practicable steps must be 

taken to notify the data subjects of, amongst others, the purpose of data 

collection and the classes of persons to whom the data may be transferred. 

Data collected should be necessary and not excessive.

2 Accuracy and Retention Practicable steps must be taken to ensure that personal data collected is 

accurate, and that it is not kept for a period longer than is necessary to 

fulfil the purpose for which it is used.

3 Use Personal data must be used for the purpose for which the data is collected 

or for a directly related purpose, unless voluntary and express consent is 

obtained from the data subject.

4 Security A data user must take practical steps to safeguard personal data collected 

from unauthorised or accidental access, processing, erasure, loss, or use.

5 Openness A data user must make known to the public its personal data policies and 

practices, the types of personal data it holds, and how the data is being 

used.

6 Data Access and Correction A data subject must be given access to his/her personal data and be able 

to make corrections if the data is inaccurate.

DPP 4(1) of Schedule 1 of the PDPO requires businesses to 

take all practicable steps to ensure that any personal data 

held by them is protected against unauthorised or accidental 

access, processing, erasure, loss, or use.

While DPP 4 creates an explicit legal requirement regarding 

the security of personal data, other provisions of the PDPO 

also have a bearing on data security. Regarding the principle 

of data minimisation, DPP 1(1) provides that only a necessary 

and not an excessive amount of personal data should be 

collected in relation to the purpose for which the data is 

collected. It is generally accepted that the less amount of data 

that is collected or held by businesses in the first place, the 

less exposure to security risks there is likely to be in the future.

On data retention, DPP 2(2) requires a data user to take all 

practicable steps to ensure that personal data is not kept 

longer than is necessary for the fulfilment of the purpose 

(including any directly related purpose) for which the data is 

or is to be used.

Section 26 of the PDPO provides that a data user is required 

to take all practicable steps to delete personal data when it is 

no longer needed for the purpose it was used unless erasure 

is prohibited by law, or it is in the public interest to retain the 

data. Implementing data retention policies that ensure the timely 

deletion of personal data that is no longer needed can help 

reduce the risk of data breaches.

To ensure compliance with section 26 and DPP 2(2), data 

users are advised to establish a comprehensive personal data 

retention policy. This policy should outline the specific retention 

periods for the personal data they hold. Additionally, data users 

should develop a personal data erasure policy that provides clear 

guidelines on management practices for identifying and erasing 

different types of records, whether in digital or physical format.

Data minimisation, anonymisation, pseudonymisation, 

deidentification, and timely erasure are some of the possible 

measures to enhance data protection. Both in theory and in 

practice, any data on any device is vulnerable to unauthorised or 

accidental access, processing, erasure, loss, or use.
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DPP 2(3) and DPP 4(2) require businesses to adopt contractual 

or other means to ensure that any data processor engaged by 

them (e.g. a cloud service provider) also complies with similar 

requirements in respect of data security and data retention.

When deciding what “reasonably practicable steps” should 

be taken to protect personal data, the PCPD would expect 

businesses to have due regard to the nature of the personal 

data they hold, the possible impact of a data breach, as well 

as the technical and organisational measures taken to ensure 

data security.

If a data security breach is suspected, it is strongly 

recommended that legal advice is sought as soon as possible. 

Prompt action in consultation with legal experts can help 

businesses navigate the complex regulatory environment, 

mitigate potential damages, and ensure compliance with 

relevant data protection laws and notification requirements.

• �Model Personal Data Protection Framework for AI

In view of the rapid development and wide range of applications of 

AI (including FL), the PCPD has issued guidelines designed to help 

Hong Kong enterprises reap the benefits of AI technology while 

maintaining personal data privacy protection. These guidelines 

include “Artificial Intelligence: Model Personal Data Protection 

Framework” (Model Framework)33 and “Guidance on the Ethical 

Development and Use of Artificial Intelligence” (Guidance)34, 

published in June 2024 and August 2021 respectively. While the 

Guidance is primarily intended for organisations that develop and 

use AI systems, the Model Framework targets organisations which 

procure, implement and use any type of AI systems (including 

generative AI). Figure 8 below depicts the model personal data 

protection framework recommended in the Model Framework.

33	 PCPD, Artificial Intelligence: Model Personal Data Protection Framework, June 2024.
34	 PCPD, Guidance on the Ethical Development and Use of Artificial Intelligence, August 2021.

Figure 8 Model Personal Data Protection Framework
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The Model Framework, which is based on general business 

processes, provides a set of recommendations and best 

practices for organisations regarding AI governance for the 

protection of personal data privacy. It is structured to ensure 

that the governance of AI systems adheres to the three Data 

Stewardship Values and the Seven Ethical Principles for AI (see 

Table 13), as advocated in the Guidance of 2021.

Table 13 Data Stewardship Values and Ethical Principles for AI

3 Data Stewardship Values 7 Ethical Principles for AI

1. Being Respectful

To respect the dignity, autonomy, rights, interests and 
reasonable expectations of individuals in processing their 
data. In this regard, every individual should be treated 
ethically, rather than as an object or a piece of data.

1.	 Accountability: Organisations should be responsible for 
what they do and be able to provide sound justifications 
for their actions. AI-related risks should be assessed and 
addressed with engagement from senior management 
and interdisciplinary collaboration.

2.	 Human Oversight: AI system users should be able 
to take informed and autonomous actions regarding 
AI systems’ recommendations and decisions. When 
employing AI systems, the level of human involvement 
should be proportionate to the associated risks and 
impacts. Human intervention should always be available 
if the use of AI is deemed high-risk.

3.	 Transparency and Interpretability35: Organisations 
should clearly and prominently disclose their use of AI 
and the relevant data privacy practices while striving to 
improve the interpretability of automated and AI-assisted 
decisions.

4.	 Data Privacy: Effective data governance should be put in 
place to protect individuals’ privacy in the development 
and use of AI.

2. Being Beneficial

Emphasises the need to provide benefits to stakeholders, 
including individuals affected by the use of AI and the 
wider community, where possible. Meanwhile, any 
potential harm to stakeholders should be prevented or 
minimised.

5.	 Beneficial AI: AI should provide benefits to human 
beings, businesses and the wider community. Provision 
of benefits encompasses prevention of harm.

6.	 Reliability, Robustness and Security: Organisations 
should ensure that AI systems operate reliably and as 
intended over their expected lifetime. AI systems should 
be resilient against errors during operations, and be 
protected against attacks such as hacking and data 
poisoning. Fallback plans should be in place to cope 
with the failure of AI systems.

35	 Interpretability refers to the ability to determine the cause and effect process within an AI system. In other words, it is the extent to which a person can predict what will happen when 
there is a change in the input to the AI system. 
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Table 13 Data stewardship values and ethical principles for AI

3 Data Stewardship Values 7 Ethical Principles for AI

3. Being Fair

In respect of processes, ‘fair’ means that decisions are 
made reasonably and without unjust bias or unlawful 
discrimination. There should be highly accessible and 
effective avenues for individuals to seek redress for 
unfair treatment. In respect of results, ‘fair’ means 
individuals in comparable circumstances should be 
treated similarly. There should be sound reasons for any 
differential treatments between different individuals or 
different groups of people.

7.	 Fairness: Individuals are entitled to be treated in a 
reasonably equal manner, without unjust bias or unlawful 
discrimination. There should be sound reasons for any 
differential treatments between different individuals or 
different groups of people.

When purchasing, implementing or using AI solutions, 

organisations should take into consideration the recommended 

measures in the following four areas (see Table 14) to formulate 

Table 14 Recommended measures regarding AI data protection

Steps/Areas Key Recommended Measures

1	 Establish AI Strategy 

and Governance

•	 Develop an internal AI strategy

•	 Consider governance issues when procuring AI solutions

•	 Establish an internal governance structure (e.g. an AI governance committee)

•	 Provide AI-related training to employees

2	 Conduct Risk 

Assessment and Human 

Oversight

•	 Conduct comprehensive risk assessments

•	 Formulate a risk management system

•	 Adopt a “risk-based” management approach

•	 Balance potentially conflicting ethical principles

3	 Customise AI Models 

and Implement and 

Manage AI Systems

•	 Ensure data preparation and management processes align with privacy laws and 

guidelines

•	 Test and validate AI models throughout customisation and implementation

•	 Ensure system security and data security

•	 Carry out continuous monitoring and review of the AI system

•	 Establish an AI Incident Response Plan

4	 Communicate 

and Engage with 

Stakeholders

•	 Establish user feedback channels to ensure effective and regular communication and 

engagement with stakeholders (e.g. internal staff, AI suppliers, individual customers 

and regulators)

•	 Ensure proper handling of data access and correction requests

•	 Provide explanations for AI-made decisions and output

•	 Disclose the use of AI systems

appropriate policies, practices and procedures. This will help 

ensure that the Data Stewardship Values and the Ethical 

Principles for AI are implemented.
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By adhering to these principles and measures, organisations 

can ensure that their AI systems are deployed in a responsible, 

transparent, and accountable manner, and are in compliance 

with PDPO requirements.

• �Proper handling of customers’ personal data 

for the insurance industry

The insurance industry handles a substantial amount of 

personal and sensitive data, including contact details, financial 

information, and medical records. Recognising the unique 

challenges faced by the insurance industry, the PCPD has 

issued a specific guidance note with practical advice and case 

studies to assist insurance institutions in complying with the 

relevant requirements of the PDPO when handling customers’ 

personal data36. 

The guidance note covers a wide range of personal privacy 

issues. It gives practical tips on the collection of customers’ 

personal data (including medical data and Hong Kong Identity 

Card numbers), the engagement of private investigators, the 

collection and use of personal data in direct marketing, the 

retention of customers’ personal data, the use of data for 

internal training, the access to and handling of personal data 

by staff and agents, and the handling of data access requests.

Meanwhile, the PDPO (as amended in 2012) requires 

businesses/individuals intending to use or provide a customer’s 

personal data to others for direct marketing purposes to clearly 

inform the customer of such an intention and to obtain their 

consent in prescribed ways. Failure to do so may attract criminal 

liability. Organisations operating within the insurance industry 

must therefore maintain awareness of and strict adherence 

to the legal requirements surrounding the use of customers’ 

personal data for direct marketing37. 

Furthermore, from a corporate risk management perspective, 

the Insurance Authority’s Guideline on Enterprise Risk 

Management (GL21)38 contains specific requirements on data 

governance related to insurance activities, covering:

•	 Data relevance and reliability: ensuring the use of 

sufficient, reliable, and relevant data in critical insurance 

processes such as underwriting, pricing, reserving, and 

reinsurance.

36	 PCPD, Guidance on the Proper Handling of Customers’ Personal Data for the Insurance Industry, November 2012.
37	 PCPD, Guidance on Direct Marketing, April 2023.
38	 IA, Guideline on the Use of Internet for Insurance Activities (GL 21), July 2019.
39	 PCPD, Guidance on Recommended Model Contractual Clauses for Cross-border Transfer of Personal Data, May 2022.

•	 Operational risk mitigation: implementing safeguards 

against operational risk events, such as data theft, 

regulatory breaches, sensitive data disclosure, and 

business disruption caused by data corruption.

•	 Data aggregation accuracy: ensuring the accuracy and 

reliability of data aggregation processes, which involve 

consolidating data from various sources for analysis and 

decision-making.

•	 Monitoring and reporting: establishing an approach 

and frequency for monitoring and reporting data quality 

deficiencies, allowing for timely identification and resolution 

of issues.

•	 Regular review: conducting regular reviews of data quality 

controls, systems, and policies to ensure their effectiveness 

and alignment with industry standards and best practices.

Adhering to these best practices and regulatory requirements 

will enable insurance institutions to enhance their compliance 

efforts and safeguard the privacy of customers’ personal data 

throughout their operations.

• Cross-boundary data transfer

Given the increased amount of data collaboration between 

Chinese Mainland and Hong Kong, Hong Kong-based 

companies that implement FL across regions should closely 

consider the various cross-boundary data transfer laws, 

regulations, measures, and guidelines in Chinese Mainland and 

Hong Kong.

For transfers of personal data to places outside Hong Kong 

(including northbound data transfers from Hong Kong 

to Chinese Mainland), the DPPs under the PDPO apply, 

regardless of the destination of the data transfer. The PCPD has 

recommended the use of Recommended Model Contractual 

Clauses (RMCs) to facilitate compliance with the PDPO’s 

DPPs for cross- boundary data transfers39. RMCs set out the 

general obligations of the contracting parties in respect of the 

protection of personal data privacy, and cater for two different 

scenarios in cross-boundary transfers, namely, (i) from a data 

user to another data user; and (ii) from a data user to a data 

processor. They are applicable to:
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a.	 The transfer of personal data from an HKSAR entity to another 

entity outside the HKSAR, including Chinese Mainland; or

b.	 The transfers between two entities outside the HKSAR 

when the transfer is controlled by an HKSAR data user.

Since the signing of the “Memorandum of Understanding on 

Facilitating Cross-boundary Data Flow within the Guangdong-

Hong Kong-Macao Greater Bay Area”40 on 29 June 2023 

between the Cyberspace Administration of China and the 

HKSAR Government’s Innovation, Technology and Industry 

Bureau, there has been a key development regarding data 

transfer rules within the Greater Bay Area (GBA):

On 13 December 2023, the “Implementation Guidelines on 

the Standard Contract for Cross-boundary Flow of Personal 

Information Within the Guangdong-Hong Kong-Macao Greater 

Bay Area (Mainland, Hong Kong)” (粵港澳大灣區 (內地、香
港) 個人信息跨境流動標準合同實施指引) came into effect41. 

Based on the relevant data protection laws of Chinese Mainland 

and Hong Kong, these guidelines aim to promote the safe and 

orderly cross-boundary flow of personal information within 

the GBA. With effect from 1 November 2024, the facilitation 

measures of the GBA Standard Contract, piloted in the banking, 

credit referencing and healthcare sectors, have been extended 

to cover all sectors in Hong Kong.

• Use of sensitive personal information

Some data used by the insurance sector is considered sensitive 

in nature, requiring more cautious handling and adherence to 

specific regulations in Hong Kong or other jurisdictions.

Under the laws of the mainland, sensitive personal information 

is subject to strict processing rules, and separate or written 

consent may be required for the processing of such data. PIPL 

40	 Digital Policy Office (DPO) (formerly known as the Office of the Government Chief Information Officer, OGCIO), Facilitating Cross-boundary Data Flow within the Greater Bay Area, 
accessed 5 August 2025.

41	 國家互聯網信息辦公室 & 香港特區政府創新科技及工業局, 粵港澳大灣區(內地、香港)個人信息跨境流動標準合同實施指引, 2023年12月13日.

defines sensitive personal information as “personal information 

that, if leaked or illegally used, may easily lead to infringement 

of a natural person’s personal dignity or endanger the personal 

safety or the property of a person”, including information 

relating to:

•	 Biometrics

•	 Religious beliefs

•	 Specific identities

•	 Healthcare

•	 Financial accounts

•	 A person’s whereabouts

•	 Any personal information of minors under the age of 14

Unlike in the European Union (EU) or Chinese Mainland, Hong 

Kong’s PDPO does not have a similarly defined classification 

of “sensitive personal data”. Hong Kong companies must 

therefore remain vigilant and be aware of the differences 

between Hong Kong’s regulations and the more stringent 

requirements of places like Chinese Mainland and the EU. 

Given the sensitive nature of the alternative data used in 

insurance operations, such as medical and financial data, it is 

recommended that insurance companies in Hong Kong should 

adhere to very rigorous data protection measures and ethical 

practices when handling such data.

While the PDPO in Hong Kong does not define “sensitive 

personal data”, the PCPD has provided specific guidance on 

the collection, use and retention of personal identifiers and 

consumer credit data through two codes of practice:
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1.	 Code of Practice on the Identity Card Number and 

Other Personal Identifiers (Revised in April 2016)42

Hong Kong Identity (HKID) Card numbers are commonly 

collected and used by organisations such as insurers to identify 

individuals and manage records related to them. However, 

the indiscriminate collection and improper handling of HKID 

Card numbers and copies may unduly infringe the privacy of 

the individuals and create opportunities for fraud. The Code 

provides guidance on the appropriate handling of personal 

identifiers in general, and HKID Card numbers and copies in 

particular. These include:

•	 Organisations in Hong Kong are required to carefully 

consider less privacy-intrusive alternatives and give the 

individual the option of choosing such alternatives before 

deciding to record or collect an individual’s HKID Card 

number.

•	 Where an organisation has collected an HKID Card number 

for a permitted purpose under the Code, they should 

generally only use that number for that purpose or other 

further purposes allowed by the Code, and not for any 

other unauthorised purposes.

•	 An organisation should not keep records of HKID Card 

numbers for longer than is necessary to fulfil the purpose 

for which they were collected.

Insurance providers in Hong Kong must strictly adhere to 

the requirements of the Code if using customers’ HKID Card 

numbers for identity matching or verification purposes, such as 

in ML models including FL.

42	 PCPD, Code of Practice on the Identity Card Number and Other Personal Identifiers, April 2016 (First Revision). Note: An updated explanatory note titled “Code of Practice on the 
Identity Card Number and Other Personal Identifiers: Compliance Guide for Data Users” was issued (Revised in August 2024). 

43	 PCPD, Understanding the Code of Practice on Consumer Credit Data Frequently Asked Questions on the Sharing of Mortgage Data for Credit Assessment Purpose, October 2015.

2.	 Code of Practice on Consumer Credit Data (Revised 

in January 2013)43

This Code is designed to provide practical guidance to data 

users in Hong Kong for the handling of consumer credit 

data. It deals with the collection, accuracy, use, security and 

access and correction issues as they relate to personal data 

of individuals who are, or have been, applicants for consumer 

credit. The Code covers, on the one hand, credit reference 

agencies (CRAs), and on the other hand, credit providers in 

their dealing with CRAs and debt collection agencies.

As the Proof-of-Concept (PoC) of this white paper research 

involves the use of consumer credit data held by one of the 

CRAs, the handling of this data must adhere to the requirements 

of the Code. These requirements include:

•	 Credit providers, such as banks and money lenders, are 

prohibited from accessing consumer credit data held by 

CRAs for direct marketing purposes. This includes offering 

or advertising goods, facilities, and services to individuals. 

However, it does not prohibit a credit provider from 

accessing the credit data of its existing customers in the 

course of reviewing or renewing their credit facilities.

•	 A CRA may not transfer consumer credit data held by it to 

a place outside Hong Kong unless the purpose of use of 

the transferred data is the same as or directly related to the 

original purpose of its collection.
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• �Best practice in the use of genetic test results

Many countries have introduced limitations (via self-regulation 

or legislation) in recent years on requests for and the use of 

genetic test results by insurers for the purpose of assessing 

insurance applications.

In Hong Kong, the Hong Kong Federation of Insurers (HKFI) 

established the Code of Practice on Genetic Testing in 2000, 

revised in 2020. It sets out key principles and best practices 

for the use of genetic test results in the insurance sector, 

which include but are not limited to underwriting and claims 

assessment44. According to the Code:

•	 Insurers will not require, compel, or pressure potential 

applicants to undertake genetic testing for underwriting 

purposes.

•	 In any event, insurers will not ask for the results of any types 

of genetic tests (Diagnostic or Predictive) for the purpose 

of underwriting if the genetic testing was conducted in the 

context of scientific research.

•	 Insurers will not ask for or use the results of any genetic 

tests of a relative or family member of a proposed or 

existing insured person for the purpose of underwriting.

44	 The Hong Kong Federation of Insurers, Best Practice on Use of Genetic Test Results, May 2020.
45	 U.S. Department of Health and Human Services, The Genetic Information Nondiscrimination Act of 2008, 2009. 
46	 UK Government and the Association of British Insurers, Code on Genetic Testing and Insurance, October 2018.
47	 EU, General Data Protection Regulation, Processing of Special Categories of Personal Data, 2016.
48	 EU, General Data Protection Regulation, Recital 52 Exceptions to the Prohibition on Processing Special Categories of Personal Data, 2016.

•	 Insurers may ask for certain predictive genetic test results 

only when the applicant applies for Life Insurance or Critical 

Illness/Dread Disease policies over defined protection 

limits, e.g. HK$5M and HK$1M respectively. For medical 

indemnity insurance, no predictive genetic test results will 

be requested, regardless of the sum insured.

Although the Code is not legally binding, insurers in Hong Kong 

are advised to adhere to it in order to promote responsible and 

ethical practices around the use of genomic data.

Insurers should also be aware that genetic privacy is protected 

to varying degrees across many jurisdictions. In the US, the 

Genetic Information Nondiscrimination Act of 2008 (GINA)45 is a 

federal law that prohibits the use of genetic information in health 

insurance underwriting and employment decisions. However, 

GINA does not apply to life insurance, disability insurance, 

or long-term care insurance, for which the use of genetic 

information is still largely unregulated at the federal level. In the 

UK, the Association of British Insurers has also developed a 

voluntary code of practice46 that limits the use of genetic test 

results in insurance underwriting. In the EU, Article 947 of the 

GDPR considers genetic data as a special category of personal 

data, and its use is subject to strict regulations and safeguards. 

Recital 52 of the GDPR48 provides exceptions to the prohibition 

on processing special categories of personal data, such as for 

health purposes, public interest, or the establishment, exercise 

or defence of legal claims.
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2.2.2.2 Cybersecurity

Like any technology that involves data and communication, FL 

may pose cyber hazards. To prevent and mitigate such risks 

in the insurance sector, the IA has issued the GL20 Guideline 

on Cybersecurity, which outlines the minimum cybersecurity 

standards that authorized insurers in Hong Kong must adhere 

to in order to safeguard their business data and the personal 

data of their policyholders.

According to GL20, insurers are required to develop a 

customised cybersecurity strategy and framework that aligns 

with the nature, scale, and complexity of their business. 

The board of directors should hold overall responsibility 

for cybersecurity controls, and establish a designated 

management team to oversee and implement cybersecurity 

measures. A self-assessment tool and systematic monitoring 

process should also be implemented for overall cyber risk 

management. Any cyber incident detected must be reported 

to the IA within 72 hours49.

The GL21 Guideline on Enterprise Risk Management 

supplements GL20 by highlighting the importance of 

incorporating a risk management policy on cyber risk, including 

controls relating to:

•	 protecting policyholder data and digital/electronic data

•	 identifying, preventing, detecting, and mitigating 

cybersecurity threats

•	 monitoring and reporting cyber risks

•	 regular testing of mitigation measures

•	 communicating cybersecurity policies and procedures to 

staff, and regularly reviewing and assessing the policies and 

procedures and monitoring their implementation

2.2.2.3 Outsourcing risk

Developing a FL model in collaboration with external entities 

or with the assistance of third-party service providers typically 

exposes organisations to greater operational risks. While Hong 

Kong does not have any specific statutes that govern and 

regulate outsourcing arrangements, some relevant industry-

specific regulations and guidelines apply.

A major concern when outsourcing IT and cloud services is 

data privacy. The PCPD advises organisations adopting cloud 

computing services to fully assess the benefits and risks, 

recognise the shared responsibility between the organisations 

as data users and cloud service providers to safeguard personal 

data privacy, especially data security, in a cloud environment, 

and ensure they are compliant with the PDPO50.

In the insurance sector, the IA has issued the Guideline on 

Outsourcing (GL14)51 to regulate the outsourcing activities of 

authorized insurers. In accordance with GL14, an authorized 

insurer should conduct due diligence in selecting its service 

provider and ensure its outsourcing arrangements comply 

with relevant laws and statutory requirements on customer 

information confidentiality (e.g. the PDPO). GL14 also requires 

insurers to conduct a comprehensive risk assessment of their 

outsourcing arrangements, and to put in place a contingency 

plan to ensure that their business will not be disrupted as a 

result of undesired contingencies (e.g. system failure) of the 

service provider. The Guideline also emphasises that the board 

of directors and management of authorized institutions should 

retain ultimate accountability for any outsourced activity.

2.2.2.4 Fair treatment of customers

Treating customers fairly is the focus of ICP 1952 issued by the 

IAIS. This principle lies at the very core of insurance regulation, 

as set out in the Insurance Ordinance and reinforced by 

various guidelines, including the Guideline on the Corporate 

Governance of Authorized Insurers (GL10)53, the Guideline on 

49	 IA, Guideline on cybersecurity (GL20), 2019. 
50	 PCPD, Guidance on Cloud Computing (Second Revision), January 2025.
51	 IA, Guideline on outsourcing (GL14), 2017. 
52	 IAIS, ICP 19 Conduct of Business, accessed 7 August 2025, https://www.iais.org/icp-online-tool/13530-icp-19-conduct-of-business/.
53	 IA, Guideline on the Corporate Governance of Authorized Insurers (GL10), 2017.
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Underwriting Class C Business (GL15)54 , and the Guideline on 

Underwriting Long Term Insurance Business (other than Class 

C Business) (GL16)55.

The use of FL in the insurance industry may introduce 

considerations related to customer fairness, particularly 

concerning bias in decision-making and transparency. To 

manage these risks and adhere to regulatory expectations, 

insurers should implement the following:

•	 Provide adequate and clear information: Ensure 

customers receive accurate, timely, and comprehensible 

information throughout the insurance lifecycle. This includes 

1) presenting product information in plain language and 

bilingual formats, avoiding technical or industry jargon, 

2) clearly disclosing key product features and risks, 3) 

explaining clearly how customer data is used, and how 

decisions are made, particularly when FL is involved in 

product recommendations, underwriting or claims. These 

measures help customers make informed decisions and 

manage their expectations effectively.

•	 Conduct suitability assessments with human 

oversight: Before recommending products, insurers 

must assess their alignment with the customer’s needs, 

financial status, and risk appetite. While FL can assist 

in these assessments, human oversight is essential to 

validate model outputs and ensure recommendations serve 

customers’ interests.

•	 Give proper advice: Any advice provided must prioritise 

the customer’s best interest, supported by clear reasoning 

and documentation. Employees and intermediaries should 

be equipped with the necessary training to understand 

both the benefits and limitations of FL, and be prepared to 

act with skill, care, and diligence.

54	 IA, Guideline on Underwriting Class C Business (GL15), 2017.
55	 IA, Guideline on Underwriting Long Term Insurance Business (other than Class C Business) (GL16), 2023.

Additionally, ongoing monitoring and auditing of the Fl models 

are vital, along with maintaining human oversight throughout 

the model lifecycle to ensure trustworthiness. Insurers should 

work closely with their technology partners to establish robust 

model governance and auditability processes.

2.2.3 Recommendations and 
Conclusion

This chapter has discussed the major legal issues related to 

FL, including risks, compliance issues, and ethical principles 

associated with this technology. Insurers are advised to 

consider the following recommendations before adopting FL.

Firstly, insurers must ensure their technical readiness for FL 

adoption by conducting a careful examination of the associated 

risks and establishing robust risk management strategies. This 

involves thoroughly assessing technological infrastructure, 

compatibility with existing systems, and potential vulnerabilities. 

By addressing these considerations upfront, insurers can 

proactively mitigate risks and ensure a smooth integration of 

FL into their operations.

Secondly, as the insurance business involves handling vast 

amounts of sensitive customer data, data protection and 

security should be a priority in the early stages of project 

planning. Insurers must diligently comply with relevant data 

privacy laws and regulations, and implement comprehensive 

security measures to safeguard sensitive data. They should 

also closely follow the evolving landscape of data privacy laws 

in other jurisdictions.

Lastly, given that the application of FL in the insurance sector is 
still in its early stages, it is recommended that insurers should 
start with small-scale pilot projects to assess their feasibility and 
scalability. By initiating pilot projects, insurers can gain valuable 
insights, learn from initial experiences, and make necessary 
adjustments before extending FL implementation across 
broader insurance processes. This iterative approach will also 
enable insurers to identify potential challenges, fine-tune their 
strategies, and optimise the benefits of FL technology for their 
specific business needs.
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As FL applications become more specialised, it is anticipated 
that domain-specific legal issues will emerge that will require 
appropriate resolutions. Therefore, engagement with legal 
professionals at the earliest stages of any FL-related project 
is strongly recommended, to ensure that all legal implications 
are comprehensively considered and incorporated into the 
project’s design. Moreover, given the evolving legal landscape 
surrounding FL, insurers must stay proactively informed about 

emerging legal requirements and best practices to ensure their 
ongoing compliance and mitigate potential risks.

The successful deployment of FL within the insurance industry 
requires a comprehensive assessment framework that 
addresses the key considerations and challenges associated 
with this collaborative ML approach, summarised in Figure 9. 
This framework should act as a guide for insurers on their journey 
to leverage FL for various insurance-related applications.

Figure 9 Assessment framework for federated learning in the insurance sector

Insurers are advised to take into consideration the 

following regulatory guidance:

• Proper handling of cybersecurity risks (GL20) and 

outsourcing risks (GL14)

• Ensuring fair treatment of customers by providing 

adequate and clear information, conducting 

suitability assessment, giving proper advice, and 

maintaining human oversight (GL15 and GL16)

• Relevant AI guidelines, such as the EU AI Act

Insurers adopting FL must comply with the following data 

privacy regulations:

• The Personal Data (Privacy) Ordinance (Cap. 486) 

(PDPO), particularly the Six Data Protection Principles 

(DPPs)

• PCPD AI Model Framework (2024) and Guidance 

(2021)

• PCPD requirements on proper handling of customers’ 

personal data for the insurance industry

• Cross-boundary data transfer, for example, the use of 

Recommended Model Contractual Clauses (RMCs)

It is advised that before adopting FL, insurers should 

consider the following recommendations:

• Ensure technical readiness for FL adoption and 

establish robust risk management strategies

• Implement comprehensive security measures to 

safeguard sensitive data

• Start with small-scale pilot projects to assess 

feasibility and scalability

Insurers using FL should adhere to these fundamental 

ethical principles:

• Accountability

• Human Oversight

• Transparency and Interpretability

• Data Privacy

• Fairness

• Being Beneficial

• Robust, Safety, and Security

Data Protection and Privacy

Ethical Principles Recommendations

Regulatory Considerations
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This part describes the key infrastructure required to create a 

collaborative Federated Learning (FL) data analytics platform 

for the insurance sector. This FL platform is applicable to 

insurance business scenarios such as product development, 

risk assessment, claims management, renewal prediction, and 

fraud detection, areas where collaborative data analysis and 

modelling can drive innovations while at the same time preserving 

data privacy. To assist insurers in its implementation, this part 

also explains how the infrastructure works, and provides an 

overview of some key Machine Learning (ML) models relevant 

to the insurance sector. In addition, it discusses mainstream 

privacy-enhancing techniques, and highlights key advances in 

areas such as training efficiency and secure identity matching 

among entities.

3.1 The Federated Learning 
Collaborative Data Analytics 
Platform

An automated FL platform collects and structures data from 

different parties or channels and applies ML models to predict 

outcomes. It streamlines data collection and analysis by 

leveraging digital technologies like optical character recognition 

(OCR) and natural language processing (NLP) to extract 

information directly from databases or scanned documents 

and analyse it. For the insurance sector, an FL data analytics 

platform created through cross-organisation collaboration has 

the potential to enhance a wide variety of insurance tasks.

The blue arrows in Figure 10 show the key steps in the FL 

data analysis process. The green arrow indicates how new 

insurance applicant data can be fed directly into the trained 

model to generate model decisions in areas such as marketing 

strategies, claims management, and renewal prediction. This 

section goes on to describe each step in detail.

Figure 10 The FL data analysis process
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Federated Learning redefines 
collaboration in insurance, enabling 
organisations to jointly unlock insights 
from distributed data, driving innovation 
without compromising privacy.
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3.1.1 Step 1: Decentralised Data 
Collection

Step 1 is primarily preparation work prior to the actual FL training, 

focused on organising and standardising the decentralised data 

collected. In an FL framework, decentralised data is collected 

from various sources but remains distributed across different 

organisations, allowing each to retain control over its own data. 

To optimise this process and ensure the effective integration of 

a diverse range of data, three key methods can be leveraged: 

Open APIs, OCR, and NLP.

•	 Open APIs provide a well-defined interface for the secure 

and standardised exchange of data between the platform 

and external systems, promoting interoperability and 

facilitating the integration of diverse data sources. The 

banking and insurance industries in Hong Kong have 

already adopted Open APIs, exemplified by the Open 

API Framework for the Insurance Sector in Hong Kong56 

and the Open API Framework for the Hong Kong Banking 

Sector57.

•	 OCR is predominantly used for capturing unstructured 

data, converting various document formats into machine-

readable data. It enables the efficient extraction of key 

information from self-provided documents by insurance 

56	 An Open API framework rolled out by the IA on 18 September 2023, which enables seamless integration and data sharing between insurance companies and authorised third-
party developers.

57	 An Open API framework published by the HKMA on 18 July 2018, which allows Hong Kong banks to provide third-party service providers (TSPs) with access to the banking 
systems and retrieve specific information and services.

applicants, such as names and dates of birth from 

identification documents, and healthcare information 

(e.g. handwritten notes) from medical records, including 

diagnoses and treatments. OCR has its limitations, 

particularly when dealing with documents that contain 

a mix of languages such as English, Traditional Chinese, 

and Simplified Chinese, as it can struggle to accurately 

recognise and process different character sets within a 

single document.

•	 NLP/ML: Unstructured data captured by OCR or API 

channels requires further processing and analysis using 

techniques like NLP or ML algorithms. These techniques 

categorise data variables based on their content or 

characteristics, and uncover patterns, relationships, and 

sentiments within the structured text. Table 15 below 

summarises how ML and NLP help to structure data. The 

approach used to convert unstructured data is determined 

by the specific scenario and the desired outcomes. FL 

trains NLP models on decentralised data, ensuring data 

privacy by sharing only model updates, not raw data. 

This approach enhances model accuracy and fosters 

collaborative insights, and can help achieve improved 

decision-making and service in industries like insurance.

Table 15 Typical ML or NLP applications for structuring data from various sources

Methods Machine Learning (ML)/Natural Language Processing (NLP) applications

Text summarisation Condenses large volumes of text data, such as policyholder applications, medical 

records, and other documents

Sentiment analysis Analyses and understands customer feedback on and sentiment towards products/

services

Topic modelling Categorises diverse statements into different topics (claims, policy changes, customer 

inquiries)

Keyword extraction Extracts medical records, identifies key entities (company names, products, individuals), 

and helps detect fraudulent activities
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3.1.2 Step 2: Confidential Identity or 
Feature Matching

Step 2 involves identifying the same entities in data from 

different sources. ‘Identity matching’ focuses on matching 

personal IDs in data from different sources, while ‘feature 

matching’ matches up specific characteristics or features of 

an entity in data from different sources. Without this process, 

different data sources containing IDs and features all relating 

to a single entity may lead the model to treat each as relating 

to a separate entity. This can lead to data fragmentation, and 

ultimately, training failures. In the FL context, proper matching 

is essential for accurately consolidating data in order to make 

the learning process more effective and reliable.

In some FL implementations, participants use hash-based 

methods for identity or feature matching. However, using 

weak hash functions (e.g. MD5 or SHA-1) without additional 

protections can expose vulnerabilities that may enable 

reverse engineering. For instance, hashing of predictable data 

(e.g. names or dates) with a weak function can be cracked 

using rainbow tables, precomputed tables for reversing 

cryptographic hashes that are commonly used in password 

cracking. To mitigate this, a strong hash function (e.g. SHA-

256) should be used and a unique salt appended to the input 

before hashing. Salting ensures that identical inputs produce 

different hashes, rendering rainbow tables ineffective unless 

the salt is compromised.

The choice between identity and feature matching depends 

on the specific scenario and the nature of the FL process. 

Identity matching is common in vertical federated learning 

(VFL), where identifiers or existing records are used to verify 

data from different sources. By contrast, feature matching is 

relevant in horizontal federated learning (HFL), where specific 

attributes are standardised for compatibility and consistency in 

model training. The automated platform advances to the model 

training phase once identities or relevant features are matched.

3.1.3 Step 3: Model Training and 
Aggregation

Model training: This is the stage at which a selected model 

learns from labelled training data to generate accurate 

predictions or decisions. In an automated system utilising FL, 

model training occurs on local participant servers, while model 

aggregation takes place on a central server where locally 

trained models are combined into a single global model.

The specific requirements and characteristics of a data analysis 

task determine whether to apply a common ML approach or a 

deep learning approach for model training.

(i)	 ML: Suitable for tasks with relatively straightforward data 

patterns and relationships. It works effectively with labelled 

data of a moderate size and complexity, and can analyse 

features to make accurate predictions. Section 3.2 offers a 

detailed overview of common ML processes.

(ii)	 Deep learning: Ideal for tasks with complex data patterns 

and relationships, such as image or text analysis. Deep 

learning models, particularly neural networks (NN), excel at 

uncovering complex patterns from large datasets, enabling 

highly accurate predictions.

During training, the model adjusts its internal parameters to 

enhance the accuracy of its predictions based on the labels 

of the training dataset. This process uses iterative optimisation 

algorithms like gradient descent to update the model’s 

parameters58 based on the calculated error or loss. The model 

continues training until it reaches a satisfactory performance 

level. Having learned from the training data, the model is now 

ready to evaluate and make predictions about new and unseen 

data.

Model aggregation: After local model training on the client’s 

server, the trained parameters are shared with a central server 

administered by a coordinator. The coordinator’s primary role 

is to facilitate the FL process, manage communication, and 

aggregate model updates. The coordinator does not access 

the clients’ raw data or require its transmission under any 

circumstances, ensuring that the underlying data remains local 

to each client. The coordinator is typically an independent entity 

with no conflicts of interest, enabling decentralised training 

while serving as a central point of coordination, quite different 

from the centralised data aggregation required by conventional 

models. While having a coordinator might seem to contradict 

the decentralised nature of FL, this role is intended to support, 

not compromise, decentralised training. The coordinator’s 

role includes facilitating communication, aggregating model 

updates and maintaining participant autonomy, thus enhancing 

58	 Model parameters are configuration variables that are internal to the model and learned during the training process. The specific set of model parameters depends on the type 
of model being used. For example, if a linear regression model is being used, the model parameters would include the slope (weight) and intercept.
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the process and ensuring efficiency without centralising 

control. Emerging FL frameworks are continuing to explore 

fully distributed approaches to further minimise any reliance on 

central coordination.

The following steps are integrated into the coordinator’s 

backend system and processed automatically:

i.	 Collection of model parameters: The coordinator 

receives the trained model parameters from the local 

models, which consist only of metadata such as model 

gradients representing the knowledge acquired by each 

local model.

ii.	 Federated model aggregation and update: Using FL, 

the coordinator performs computations on the encrypted 

model updates using homomorphic encryption techniques, 

enabling the parameters to be combined while preserving 

privacy and minimising the risk of exposing sensitive data. 

Once the model aggregation is complete, the coordinator 

updates the global model parameters based on the 

aggregated results.

iii.	 Updated model distribution: The coordinator distributes 

the updated global model parameters back to the local 

models, enabling them to learn from each other and 

improve their performance.

3.1.4 Step 4: Smart Decision-making

In the final step of the collaborative data analysis process, 

insurance companies are able to harness the trained model’s 

predictive power to make informed decisions. By combining 

federated data analytics and conventional analysis models, 

deeper insights for various insurance tasks can be made 

available. This includes forecasting market trends, detecting 

fraudulent claims, and identifying factors that influence renewal 

decisions.

3.1.5 Step 5: Ongoing Assessment

Step 5 involves the ongoing assessment and evaluation of 

model performance in real-world environments to ensure 

models remain accurate, reliable, and effective over time. One 

effective strategy for ongoing evaluation is the champion-

challenger approach, which has been widely adopted in 

industries like insurance and is a key component of machine 

learning operations (MLOps), a set of practices that automate 

and simplify machine learning workflows and deployments. 

By enabling the simultaneous evaluation of established 

(champion) and innovative (challenger) models, the champion-

challenger approach aims to improve operational efficiency and 

performance, thereby facilitating the production process.

The “champion” is the current operational production model, 

which is performing reliably and has a proven track record. 

The “challenger” is a new model, often powered by advanced 

ML, alternative data or FL, which is tested in parallel using 

the same input data. If the evaluation metrics (e.g. accuracy, 

risk prediction, or cost efficiency) show that the challenger 

outperforms the champion, the challenger can replace it 

and become the new champion. This iterative cycle fosters 

continuous improvement.

The champion-challenger approach offers several advantages:

•	 Integration of strengths: Conventional models provide 

stability and reliability, while FL models, leveraging 

decentralised data, may uncover novel patterns. Combining 

them offers a balance of proven and cutting-edge insights.

•	 Continuous improvement: Testing FL models alongside 

conventional ones allows insurers to refine their predictive 

capabilities iteratively, and adopt superior models as they 

emerge.

•	 Enhanced insights: FL challengers can capture complex, 

distributed data patterns that conventional champions 

might miss, enriching analyses.

•	 Risk mitigation: Pairing innovative FL models with trusted 

conventional ones reduces the risks associated with 

using untested methodologies, grounding decisions in 

established strategies.

This dual approach enhances accuracy and comprehensiveness 

across key areas:

•	 Validation & trust: Conventional models serve as a 

benchmark, cross-validating results to flag anomalies and 

build confidence in prediction.

•	 Risk management: The reliability of conventional 

champions supports high-stakes decisions, while FL 

adapts to emerging trends.
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•	 Adaptation: FL models excel at rapid adaptation to new 

data patterns, complementing the stability of conventional 

models for reporting and planning.

•	 Regulatory/ethical: Conventional models may align better 

with regulatory or ethical constraints, while FL evolves to 

meet these standards over time.

3.2 Development of Machine 
Learning Models

FL ensures data confidentiality and privacy by having 

participants train their models in a decentralised manner. The 

fundamental steps for training local models remain the same as 

in the traditional ML model training process. The following four 

steps summarise these processes:

Figure 11 Standard steps in a traditional ML model
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3.2.1 Data Preparation and 
Preprocessing

Data preparation and preprocessing are the initial steps in the 

ML pipeline. Once data is collected, the preprocessing phase 

begins, which includes data integrity checks and new variable 

derivation.

•	 Data integrity checks: These help identify and fix data 

problems or errors before model training, to ensure data 

quality and reliability. Each attribute or field in the dataset is 

validated for the correct data type, and any discrepancies 

are flagged. The checks also identify missing values, such 

as empty fields or NULL values. Table 16 below outlines 

strategies for handling specific data integrity issues.

Table 16 Strategies for handling specific data integrity issues

Issues Description Strategies

Outlier Data points that are significantly different 

from the rest.

•	 Remove if due to errors or extreme values.

•	 Retain and manage if they represent true 

values.

Missing Values Entries with no value due to input errors, 

equipment malfunctions, or data corruption.

•	 Impute using mean or median of the existing 

data, if the absence of value is random.

•	 Use regression analysis to estimate based on 

known values, if there are correlations with 

other variables.

Data Anomalies 

and Errors

Irregularities or inaccuracies that deviate 

from expected patterns or behaviour.

•	 Employ anomaly detection, using statistical 

models or machine learning (ML) algorithms 

to identify unusual patterns.

•	 Implement data cleaning such as 

deduplication, typo correction, and imputation 

to address data errors.
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•	 New variable derivations: This involves creating new 

variables from existing data to enhance the model’s 

predictive power or descriptive capability. New variables are 

derived through mathematical operations, transformations, 

or combinations of existing variables, with the aim of 

uncovering additional information or patterns that may not 

be readily apparent in the original dataset. Table 17 lists 

different methods for new variable derivations. By applying 

these methods, each party enriches its own dataset to 

capture local patterns. When aggregated into a global 

model via FL, these enhanced local models contribute to 

greater accuracy and nuance.

However, FL’s decentralised nature presents challenges when 

variables depend on data held by different parties. For instance, 

if Party A holds data on a person’s height and Party B data on 

their weight, direct calculation of their body mass index (BMI)—

calculated as weight divided by height squared—cannot be 

performed without sharing raw data, a situation which FL seeks 

to avoid.

FL addresses this issue through specific model architecture or 

secure protocols. In this example, the process would work as 

follows:

1.	 Local preprocessing: Each party can preprocess its data 

individually. For instance, Party A can compute the square 

of the height (height²), while Party B retains the weight.

2.	 Secure aggregation: During the FL process, these 

preprocessed inputs can be shared in a secure manner. 

The global model learns to combine these inputs without 

ever needing access to the raw height or weight.

3.	 Collaborative insights: By aggregating these local 

computations, the global model can effectively estimate 

BMI, despite not having direct access to the complete data 

from either party.

Additionally, advanced techniques like secure multi-party 

computation can derive such features privately, although they 

increase the computational cost. Table 17 lays out methods for 

local new feature derivations. However, FL’s strength lies in its 

ability to generate collaborative insights from distributed data 

without centralising it, in a balance of privacy and utility.

Table 17 Methods for new feature derivations

Method Description

Mathematical Transformations Create new or modify existing variables using mathematical functions to normalise 

variables or data, reduce skewness, or establish non-linear relationships. Common 

types include logarithmic, exponential, square root, and power transformations.

Interaction Terms Create new variables that represent the product or combination of two or more 

existing variables, assessing how one predictor variable affects the relationship 

between another predictor and the outcome variable.

Aggregation Combines multiple pieces of data into a single summary statistic, using methods 

such as summing, averaging, or finding the maximum or minimum values. This 

is particularly useful for time series data, where aggregation occurs over specific 

periods.
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3.2.2 Model Training and Validation

Local machines preprocess raw data into meaningful high-

quality data, which is then divided into training and testing 

datasets.

•	 Training set: ML algorithms construct the model and train 

it by feeding it labelled examples from the training set. The 

model is trained by learning patterns and correlations from 

the input data.

•	 Testing set: The testing set is used to evaluate the trained 

model’s performance. By assessing the model’s predictions 

against this dataset, various performance metrics, such 

as accuracy, can be calculated. This helps gauge how 

effectively the model is able to generalise to new, unseen 

data and how accurately it can answer specific questions 

or make predictions (see Figure 12 for the workflow).

Figure 12 Workflow of ML model training
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It is difficult to draw a definitive conclusion about the best 

algorithm for use in the insurance sector because different 

algorithms’ predictions are highly dependent on the alternative 

data available. Thus, selecting an appropriate ML algorithm 

for prediction necessitates a continual evaluation of both older 

and state-of-the-art ML models. Table 18 summarises and 

compares several typical or ML algorithms.

Table 18 Comparative analysis of ML algorithms

Algorithm Method Description Pros Cons

Logistic 

Regression 

(LR)

Probabilistic 

method

•	 Predicts the probability of 

a binary outcome based on 

one or more independent 

variables.

•	 Commonly used in 

classification tasks with 

categorical outcome 

variables.

•	 Simple and easy 

to interpret

•	 Efficient to train 

and predict

•	 Provides 

probabilistic 

outputs

•	 Assumes a linear 

relationship 

between features

•	 Less effective 

on data with a 

complex pattern

•	 Sensitive to outliers

Naive Bayes Probabilistic 

method

•	 Applies Bayes’ theorem 

and assumes conditional 

independence among 

features to calculate class 

probabilities, selecting the 

most probable class as the 

prediction.

•	 Quick and effective for large 

datasets with many features.

•	 Computationally 

efficient

•	 Works well on 

high-dimension 

data

•	 Assumes 

independence 

between features 

which may not 

always be valid

•	 Susceptible to 

irrelevant features
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Algorithm Method Description Pros Cons

K-Nearest 

Neighbours 

(KNN)

Non-

parametric 

method

•	 Uses proximity to classify 

or predict the grouping of a 

single data point.

•	 One of the most popular and 

simplest classification and 

regression classifiers used 

in ML today.

•	 Easy to 

understand and 

implement

•	 Works well with 

nonlinear decision 

boundaries

•	 Can handle 

multi-class 

classification

•	 Sensitive to the 

choice of parameter 

value K

•	 Requires 

appropriate scaling 

of features

•	 Hard to explain 

the underlying 

relationships 

between data

Decision Tree Tree-based 

method

•	 A flexible algorithm capable 

of handling classification 

and regression tasks by 

creating a tree-based model 

that partitions data using 

feature values.

•	 Known for its interpretability 

and ability to handle both 

numerical and categorical 

data types, offering a 

versatile solution in ML for 

various applications.

•	 Easy to interpret 

and visualise

•	 Robust in 

handling missing 

values and 

outliers

•	 Prone to overfitting

•	 Sensitive to small 

variations

Random 

Forest

Ensemble 

learning 

method-

Bagging

•	 Improves the accuracy of 

prediction by aggregating 

the predictions of multiple 

individual decision trees.

•	 Robust enough to handle 

high-dimensional data well.

•	 Reduces 

overfitting through 

ensemble learning

•	 Robust in parallel 

or distributed 

computing

•	 More complex than 

one single decision 

tree

•	 Lack of 

interpretability 

compared to a 

single decision tree
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Algorithm Method Description Pros Cons

Gradient 

Boosting/

XGBoost

Ensemble 

learning 

method-

Boosting

•	 Combines weak learners 

(usually decision trees) to 

create a strong predictive 

model.

•	 Through iterative training 

and the addition of new 

models, aims to correct the 

mistakes made by previous 

models, thereby improving 

overall prediction accuracy.

•	 Able to handle 

complex data

•	 High predictive 

accuracy

•	 Sensitive to 

overfitting

•	 Computationally 

expensive and 

time-consuming

Neural 

Network (NN)

Deep learning 

method

•	 A computational model 

inspired by the human brain, 

made up of interconnected 

artificial neurons in layers.

•	 Excels at learning complex 

patterns and relationships, 

making it suitable for tasks 

like classification, regression, 

and image recognition.

•	 Common types include 

the Multi-Layer Perceptron 

(MLP) for classification and 

regression, Convolutional 

Neural Networks (CNN) 

for image and video 

processing, and Recurrent 

Neural Networks (RNN) for 

sequential data tasks.

•	 High predictive 

accuracy

•	 Easy to handle 

non-linear data 

with a large 

number of 

features

•	 Large network size

•	 Computational 

complexity, 

requiring much 

parameter tuning

•	 Lack of 

interpretability

Another approach for assessing a model’s performance is 

cross-validation. This involves dividing the dataset into multiple 

folds, and using one of these folds as a validation set while 

carrying out training on the remaining folds. This process is 

repeated multiple times, using a different fold as a validation 

set each time. Finally, the results from each validation step 

are averaged to produce a robust estimate of the model’s 

performance.

3.2.3 Model Evaluation and Prediction

For insurers, reliable assessment models should be capable 

of providing answers to important questions regarding the 

likelihood of a policyholder making a future claim, the expected 

severity or cost of potential claims, and the appropriate premium 

rate and coverage limits for a specific risk profile. Ensuring the 

reliability of these models requires effective techniques and 

practices for model evaluation. Table 19 illustrates several 

common metrics used to evaluate the performance of ML 

models, depending on the problem type.
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Table 19 Overview of key performance metrics in ML

Metrics Range59 Measures Application scenarios

Area Under the 

Curve (AUC)

0 to 1, above 0.8 is often 

considered good

The area under the Receiver Operating 

Characteristic (ROC) curve60. A 

higher AUC value indicates better 

discrimination between positive and 

negative instances.

Ranking problems, binary 

classification

Accuracy 0 to 1, above 0.8 is often 

considered good

Proportion of correct predictions 

among total predictions, providing 

an overall measure of the model’s 

correctness.

General classification 

problems where classes 

are balanced

Precision 0 to 1, above 0.7 is 

generally considered 

good

Proportion of true positives (TPs)61 

among all predicted positives, 

measuring the ability of the model to 

avoid false positives (FPs)62 such as 

classifying legitimate emails as spam.

When false positives 

are costly (e.g. spam 

detection)

Recall 0 to 1, above 0.7 is often 

considered good

Proportion of TPs among all actual 

positives, quantifying the model’s 

capability to avoid false negatives 

(FNs)63, such as cases where patients 

with a disease are missed or incorrectly 

classified as negative.

When FNs are costly (e.g. 

medical diagnosis, fraud 

detection)

F1 score 0 to 1, above 0.7 is 

considered good

Combines both precision and recall, 

useful when there is an imbalance 

between the positive and negative 

classes.

Imbalanced classification 

problems

MSE Always non-negative The average of the squares of the 

errors between actual values and 

predicted values, making it easier to 

compute the gradient.

Regression tasks

KS index 0 to 1, a higher value 

indicates better 

performance

Measures the maximum difference 

between the positive and negative 

classes

Binary classification 

problems

59	 The threshold for “good” depends on the specific problem being addressed.
60	 The ROC curve is a graphical plot that showcases how well the model performs. It visualises the relationship between the true positive rate (TPR) and the false positive rate (FPR) 

over all possible acceptance thresholds.
61	 True positives (TPs) occur when the model’s prediction matches the truth.
62	 False positives (FPs) are cases where the model incorrectly predicts a positive outcome for negative instances.
63	 False negatives (FNs) occur when the model predicts a negative outcome, while the true class is positive.
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Once an ML model has been trained and evaluated, it is ready 

to make predictions on new, unseen data. Model prediction is 

the process of using the trained model to generate output or 

make decisions based on input data.

3.2.4 Model Explainability

The pursuit of improved predictive accuracy has led to 

increased model complexity, with deep learning being at the 

heart of many state-of-the-art ML systems. However, this 

complexity comes at a cost: deep learning models are often 

opaque and difficult to interpret, earning them the nickname 

“black boxes”.

Lack of interpretability can be a major obstacle to trust, 

particularly in sensitive areas like finance, transportation, 

and healthcare. For instance, a bank using AI to make credit 

decisions must provide clear reasons for loan denials, or 

customers may lose trust in the system and feel unfairly 

treated. Similarly, autonomous vehicles must be able to 

explain their driving decisions, as a lack of explainability can 

lead to scepticism and a reluctance to adopt the technology. 

In healthcare, if doctors and patients cannot understand the 

reasons for the recommendations generated by ML algorithms, 

they are likely not to trust these recommendations. The need 

for trustworthy, fair, robust, and high-performing models has 

led to the rise of Explainable Artificial Intelligence (XAI). XAI aims 

to make AI models transparent, interpretable, fair, and robust 

by providing insights into their decision-making processes, 

addressing biases, ensuring reliability, and fostering user trust.

Several tools and libraries have also emerged that are helping 

make AI models more transparent and interpretable. Examples 

include:

•	 Python software libraries such as Scikit-learn which can 

analyse AI models and explain which factors or features in 

the data are most important for the model’s predictions. 

This helps users understand how the AI is making decisions.

•	 Tools such as Explain Like I’m 5 which can break down the 

reasoning behind an AI model’s output in plain language 

and explain it in simple terms. This makes the inner workings 

of complex AI models more accessible.

•	 Software that uses mathematical concepts like “Shapley 

values” to visualise the influence of different input factors 

on an AI model’s output, offering insights at both local and 

global levels. This provides a more comprehensible way to 

interpret how the model is arriving at its conclusions.

•	 Libraries such as Local Interpretable Model-Agnostic 

Explanations can explain the predictions of any type of AI 

model, even ones that are very complex and extremely 

difficult to understand. This increases transparency by 

providing detailed insights into individual predictions.

These types of interpretability tools are making it easier for 

humans to understand and trust the reasoning behind AI-

powered decisions and predictions, thus making AI models 

more transparent and accountable.

3.3 Privacy-enhancing Techniques 
for Federated Learning

FL is a prominent privacy-enhancing technique, but it is not 

entirely immune to the risks of data or model leakage under 

adversarial attacks, as discussed in Part Two. The real-world 

environment often presents complex challenges in this respect. 

Despite this, the Hong Kong government has recognised the 

importance of promoting the digital economy and building a 

robust data trading ecosystem within the region, making further 

enhancements to the reliability and practicality of FL a crucial 

focus area.

This section discusses privacy-enhancing techniques (PETs) 

for FL systems and explores specific PETs that address 

the challenges associated with identity matching in FL 

environments.
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3.3.1 Key Privacy-enhancing 
Techniques

3.3.1.1 Overview of PETs

Common examples of mainstream PETs include secure 

multi-party computation (SMPC), differential privacy (DP), 

homomorphic encryption (HE), and confidential computing. 

Table 20 summarises each type and discusses their pros and 

cons.

• SMPC

SMPC enables collaborative data analysis while preserving 

privacy by allowing separate parties to jointly derive insights 

without revealing specific data values. One key technique is 

secret sharing, which involves dividing sensitive data into 

shares that are distributed among multiple parties, ensuring 

that no single party has complete access to the original data.

In the context of the insurance industry, SMPC allows insurance 

companies and data providers to perform joint computations 

on encrypted data, facilitating collaborative model training and 

analysis without exposing sensitive information. This approach 

enables the encrypted results to be shared, helping insurance 

companies benefit from external insights while complying with 

data privacy and regulatory requirements.

• DP

Compared to data anonymisation, DP provides a quantifiable 

privacy guarantee by introducing random noise into the 

dataset. This is measured by a parameter called epsilon. A 

smaller epsilon value indicates a stronger privacy guarantee, 

as it represents more noise and a lower risk of re-identification. 

In FL, each device or organisation applies DP techniques to 

add controlled noise to their local data before sharing it with 

a central server. This enables insurance companies to protect 

policyholder identities and protect customer privacy, while still 

enabling collaborative data analysis.

• HE

HE is a cryptographic technique that allows computations to 

be performed directly on encrypted data, without the need for 

decryption. Unlike SMPC, which involves collaboration among 

multiple parties, HE integrates encryption and decryption 

processes into the computation itself. This minimises the need 

for additional communication and interaction between parties 

during computation, enhancing efficiency.

• Confidential computing

Confidential computing enables data to be processed within 

a secure environment, enhancing data security by preventing 

unauthorised access during computation. It employs two 

key security techniques: isolation, which protects sensitive 

information while in use, and remote attestation, which verifies 

this protection and the data’s intended purpose before 

computation begins.

Trusted execution environments (TEE) are essential for 

confidential computing, as they provide for the hardware-

enforced isolation of sensitive code and data. TEEs are secure 

enclaves that protect against external tampering, including 

tampering by privileged system software such as an operating 

system or hypervisor, while maintaining confidentiality and 

integrity during execution.
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Table 20 Summary of key PETs and their pros and cons

PET Mechanism Pros Cons

Secure 

multi-party 

computation 

(SMPC)

Protects parameters sent from 

participants to ensure that they do not 

reveal their inputs.

•	 Privacy preservation

•	 Data security

•	 Decentralised 

computation

•	 Communication 

overhead

•	 Scalability limitations

•	 Highly rely on practical 

factors like network 

bandwidth

Homomorphic 

encryption (HE)

Encrypt local parameters from all 

participants. The coordinator server 

receives an encrypted global model 

which can only be decrypted if enough 

local models have been aggregated.

•	 Data privacy

•	 Secure computing

•	 Flexible applications

•	 Computational 

overhead

•	 Complex key 

management

•	 Lack of widely 

accepted standards 

and protocols

Secure 

communication 

protocols

Protocols between clients and 

between clients and the central server.

Utilises protocols to prevent man-in-

the-middle attacks, eavesdropping, 

and tampering.

•	 Data confidentiality

•	 Ensuring the 

information integrity

•	 Standardised 

communication 

protocols

•	 Complex to implement

•	 Performance overheads

•	 Vulnerability to attacks

Differential 

privacy (DP)

Adds noise to a particular individual’s 

data to hide the fact that the 

individual’s data was used in the 

training task.

•	 Privacy guarantee

•	 Resilience to data 

breaches

•	 Algorithmic 

foundations

•	 Accuracy trade-off

•	 Limited application 

scenarios

•	 Difficulty in parameter 

tuning

Confidential 

computing

Uses trusted execution environments 

(TEE) to isolate and secure the 

execution of code and data.

•	 Enhanced security •	 Complex 

implementation

•	 Limited availability

•	 Performance overheads



Part Three: Federated Learning Infrastructure for the Insurance Industry

060 Whitepaper on Federated Learning / 2025

3.3.1.2 Fast-Training strategy module 
(FSTM)

Privacy-preserving techniques often require extra computations, 

such as noise addition, data transformations, cryptographic 

proofs, and secure communication protocols. These extra 

computations introduce additional computational overheads, 

as a trade-off for protecting privacy. Operations such as 

encryption and decryption involve complex mathematical 

calculations such as modular exponentiation and multiplication, 

while the generation of cryptographic keys, including public-

private key pairs, is computationally intensive.

The FTSM64 is proposed as a way of making privacy-enhancing 

techniques more practical for a real-world FL platform. This is a 

module that aims to improve the efficiency and computational 

performance of the FL training process by enabling faster 

training while preserving privacy guarantees. Table 21 

provides a comparison of the characteristics of the FSTM and 

mainstream PETs.

64	 Yang Liu et al., A Secure Federated Transfer Learning Framework, IEEE Intelligent Systems, 2020.

Table 21 Comparison of the FTSM and mainstream PETs

Aspect
Homomorphic encryption 

(HE)

Differential privacy  

(DP)

Fast-training strategy module 

(FSTM)

What is 

Generated?

Public-private key pairs for 

encryption

Noise, such as Laplace 

noise or Gaussian noise

Beaver triple matrix for training

Key Computation 

Feature

Performs computation on 

encrypted data without 

decrypting data

Adds noise to the 

computation parameters or 

output results

Performs computation on a matrix 

with randomness

Type of Delivered 

Data

Encrypted model 

parameters, such as 

gradient

Computation parameters 

with added noise

Computation matrix manipulated by 

the random matrix

Characteristics High computational 

complexity

Large ciphertext size

Noise might impact model 

accuracy and performance

Matrix speeds up the calculation 

process but increases the 

implementation complexity

Comprehensive design is required 

before implementation

As shown in the table, HE algorithms can suffer from 

performance inefficiencies due to the overheads associated 

with maintaining public-private key pairs. DP, which addresses 

privacy concerns by introducing noise into calculation results, 

can compromise accuracy and performance.

By comparison, the FTSM’s use of matrix calculations delivers a 

significant improvement in computational speed, mainly due to 

the parallelisability of matrices and their inherent mathematical 

properties. Leveraging these properties allows for efficient 

parallel computations, resulting in faster execution times and 

enhanced computational efficiency.
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3.3.2 Secure Identity Matching for 
Utilisation of Alternative Data
Once each participant has uploaded their data to their 
respective local servers, conducting secure data matching 
(e.g. identity matching or feature matching) while ensuring the 
protection of sensitive information becomes a crucial challenge. 
Traditional identity matching methods often involve sharing 
personally identifiable information (PII), posing significant risks 
to data privacy and security.

Privacy-preserving identity matching techniques have been 
developed to address these concerns. One is private set 
intersection (PSI), which enables parties to find common 
elements or matches between their datasets without revealing 
any non-matching data, allowing for secure collaboration 
and identity reconciliation without directly exposing sensitive 
information.

3.3.2.1 Overview of PSI

•	 PSI: PSI is a SMPC that allows organisations to identify 
common elements in their datasets without revealing the 
specific contents of their respective datasets. PSI only 
shows the shared features across different datasets, 
facilitating the linking of individuals or data elements across 
organisations for various use cases. It reduces privacy risks 
by only revealing the standard features shared between 
two datasets, without requiring both parties to disclose 
their entire datasets to each other.

•	 Classification of PSI protocols: Achieving the secure 
intersection of two sets without compromising the 
confidentiality of any information except the resulting 
intersection is a significant challenge for secure computation. 
Several techniques have been suggested to address this 
problem, including the efficient yet insecure naïve hashing 
solution, protocols that rely on a partially trusted third party, 
protocols based on public key, circuit-based PSI, and 
Oblivious-Transfer PSI. Each category is discussed in detail 
below (see Table 2265):

65	 Benny Pinkas et al., Scalable Private Set intersection Based on OT Extension. ACM Transactions on Privacy and Security, 2018.

Table 22 Classification and details of PSI protocols

PSI protocols Key approach Pros Cons

Naïve hashing Uses a hash function to hash its 
stored elements

•	 Efficient in run time 
and communication

•	 Vulnerable to a 
brute-force attack

•	 Hash collisions

Server-aided/ 
Third party-based

Employs a third party to achieve 
better performance. The server could 
be semi-honest, covert, or malicious.

•	 Reduced 
communication 
overheads

•	 Secure only if the 
third party does not 
collude with any of 
the other clients

Public key 
cryptography-based

Encrypts the elements using public-
key cryptography, such as the Diffie-
Hellmann key agreement and blind 

RSA

•	 Does not require a 
trusted third party or 
central server

•	 Requires proper key 
management

•	 Large communication 
overheads

Generic protocol/
Circuit-based

Uses generic secure computation •	 High security •	 Circuit-based 
approach requires 
expensive 
computation and 
communication

Oblivious 
transfer-based

The receiver obtains one out of 
multiple potential messages from the 
sender without the sender learning 

which specific message was chosen 
or revealed to the receiver.

•	 Efficient 
communication

•	 Needs intensive 
computation

•	 Requires large 
computational 
resources
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•	 Basic PSI process: In general, there is no single universally 

accepted standard process for PSI. The following steps 

provide a simplified overview of how PSI typically works:

1.	 Setup: The participating parties agree on a cryptographic 

scheme and establish their private sets.

2.	 Encryption: Each party encrypts its set using a secure 

encryption scheme that allows for set membership testing 

without disclosing the actual elements.

3.	 Exchange: The encrypted sets are exchanged between the 

parties, ensuring the preservation of privacy. This exchange 

can occur directly between the parties, or through a trusted 

intermediary.

4.	 Intersection: Each party performs operations on the 

received encrypted sets to determine the common 

elements. This typically involves comparing the encrypted 

values and identifying matches.

5.	 Decryption: Once the intersection has been identified, the 

parties can decrypt the matching elements to reveal the 

details in their sets.

•	 PSI applications: PSI has a wide range of real-world 

applications across various domains. For instance, PSI 

can be used in fraud detection and anti-money laundering, 

online recommendation systems, confidential data sharing, 

border protection and no-fly lists, network security 

operations, customer list intersections for marketing, 

medical research and patient data analysis, multi-party 

access control, enterprise network auditing, and many 

more situations. Some practical examples are listed below:

◇	 Insurance companies: Multiple insurance companies 

can use PSI to find intersections in their customer lists, 

enabling them to identify shared customers without 

disclosing individual customer information.

◇	 Healthcare providers: PSI can facilitate the secure 

exchange of medical information between healthcare 

providers in a way that complies with privacy regulations. 

It ensures that sensitive patient data remains protected 

while enabling efficient data sharing for improved 

healthcare outcomes.

◇	 Social network applications: In a social network 

application, two users can use PSI to discover common 

friends without revealing other friends that are not in the 

intersection. This preserves privacy while still enabling 

social connections to be established.

However, PSI can introduce certain risks, such as risks of 

re-identification due to inappropriate intersection sizes or 

over-analysis. In our proposed framework, a CIMM has been 

designed for identity matching purpose to mitigate such 

risks. The CIMM uses secure hashing combined with random 

number generation to protect identities by transforming them 

into hashed representations, with only partial intermediate 

results sent to a neutral coordinator who has no access to the 

raw data. The coordinator uses HE to compute on encrypted 

data, enabling identity matching without revealing sensitive 

information.

3.3.2.2 Confidential identity matching 
module (CIMM)

• Problems with general FL frameworks

Lack of a third party acting as coordinator

In a VFL framework that lacks a third party acting as a 

coordinator, the hashed values of raw identities are exchanged 

between parties A and B, or party A sends the hashed values 

to party B to compare the matches. However, this approach 

poses risks to the privacy and security of the data because 

the partner party now holds the hashed values, leaving them 

potentially vulnerable to attackers. For instance, an attacker 

may employ brute-force attack techniques to uncover the 

original data.

Untrusted third party

A third party is a critical component of the FL framework. 

However, if the third party is not trustworthy, it could collude 

with one of the parties, leading to biased models, data 

breaches, or other security threats. For example, the third 

party could intentionally introduce bias into the model, or leak 

sensitive data to a competitor.
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Reverse engineering with a third party

Even with a third party, the encrypted data received from 

parties A and B can still be vulnerable to reverse engineering 

attacks. Reverse engineering is the process of analysing the 

encrypted data to uncover its hidden patterns and relationships, 

compromising the privacy of the data and potentially leading to 

data breaches. For instance, an attacker could use clustering 

algorithms to identify patterns in the hashed data and infer 

sensitive information about the data owners.

• CIMM

The focus of our CIMM is identity matching, which involves 

comparing and correlating data from various sources while 

maintaining privacy. It employs a hash function and the HE 

technique to securely match identities across different clients, 

as well as a neutral third party to distribute the matched results, 

either Boolean or operator, back to the clients. Some highlight 

features are as follows:

1.	 Secure hashing with random number generation: The 

CIMM employs hashing techniques to transform the original 

identities into hashed representations. It also includes 

Table 23 How the CIMM solves key problems

Problems How our module solves the problems

Lack of a third party acting 

as coordinator

The CIMM incorporates a coordinator to oversee the matching process. Hashed identities 

are encrypted, adding an extra layer of protection to safeguard the privacy of the data.

Untrusted third party The coordinator’s neutrality ensures that it cannot collude with any of the clients. Even if 

collusion were to occur, the coordinator does not have access to the original identities.

Reverse engineering with a 

third party

The coordinator receives the differences between the encrypted identities rather than the 

encrypted identities themselves.

random number generation to enhance the privacy and 

security of the identities. This combination provides an 

additional layer of security for sensitive information, with 

only a portion of the intermediate computation results sent 

to the coordinator.

2.	 Neutral coordinator: The coordinator computes the 

difference between the clients’ encrypted identities and 

returns the result. This process enables clients to determine 

matches or non-matches without revealing sensitive 

information. In this research, the coordinator (the Insurance 

Authority) had no access to the raw data stored on the 

clients’ devices. Further details about the coordinator’s role 

can be found in Section 3.1.3.

3.	 HE for secure computations: The coordinator performs 

computations directly on the encrypted data using HE 

techniques without the need for decryption.

Table 23 provides a detailed overview of how the CIMM 

addresses the identity-matching problems described above. 

It highlights the role of the neutral coordinator, the use of 

encrypted data exchange, and the protection it offers against 

reverse engineering.
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This part evaluates the technical feasibility of using the FL 

framework introduced in Part Three in the insurance industry. 

The objective is to assess the framework’s performance and 

efficacy using real-world insurance-related datasets.

Before the PoC work was undertaken, different ML algorithms 

were first evaluated on a set of open-source datasets. These 

were grouped into three categories based on their source 

characteristics, namely generic policyholder information, 

premium data, and finance data. The experiments were 

conducted to evaluate how alternative data sources and varying 

data volumes influence different ML models’ performance. 

Models were trained and tested with different data groups, and 

the model performance was assessed with the Area Under the 

Curve (AUC) metric. An assessment of the fast-training strategy 

module (FTSM) was also undertaken.

4.1 Introduction to the Experiments

The experiments tested eight ML algorithms: Logistic 

Regression (LR), Naïve Bayes, K-Nearest Neighbours (KNN), 

Decision Tree, Random Forest, Gradient Boosting, XGBoost, 

and Neural Network (NN). Each algorithm was independently 

trained with hyperparameter tuning to optimise configurations. 

Detailed algorithm descriptions are in Section 2 of Part Three, 

while tuning specifics are omitted for brevity.

Conducted in a Jupyter Notebook, the experiments involved 

splitting the data into parts that acted as diverse data sources 

from different parties. Performance outputs were exported 

for analysis and their effectiveness was assessed using ROC 

curves and the AUC, which serves as a reliable measure of 

classification performance.

The aim was to assess the likelihood of a policyholder paying 

the 13th-month premium at the new business stage. Accurate 

predictions of policy renewals are important for insurers, 

helping them design better policies and improve their customer 

retention strategies. The experiment consisted of two parts:

•	 Experiment one: Evaluated how different algorithms 

handled alternative data, specifically in a vertical federated 

learning (VFL) scenario, by dividing the dataset into groups 

based on generic, premium and finance characteristics, 

and using AUC for performance assessment.

•	 Experiment two: Assessed the effectiveness of enhancing 

data volume in model training within a horizontal federated 

learning (HFL) scenario, maintaining AUC as the consistent 

evaluation metric.

4.2 Data Overview

This experiment employed an insurance dataset obtained from 

Kaggle66, consisting of 100,000 records, 38 features, and one 

binary label indicating whether the 13th-month premium was 

paid or not. To ensure the data quality, 28 important features 

and 57,580 rows of records without missing values were 

selected. This cleaned data was categorised into three distinct 

groups based on the data properties. Table 24 provides 

a breakdown of this categorisation from VAR1 to VAR28, 

presenting the division of the raw dataset into three categories, 

namely generic data (containing application life-assured 

basic information, agent information and health-related data), 

premium information data, and financial information data.

To further refine the input data for modelling, standardised 

operations were applied on certain features, such as Applicant’s 

Policy Annualised Premium, Applicant’s Policy Sum Assured, 

and Application Life Assured Income. This step was necessary 

because these features initially had varying scales. For example, 

the Policy Sum Assured had a wide range of values, from 0 

to 700,000,000. Standardisation rescaled these features to a 

more suitable range for effective model training.

66	 Benny Pinkas et al., Scalable Private Set intersection Based on OT Extension. ACM Transactions on Privacy and Security, 2018.
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Additionally, the dataset contained some categorical variables 

that cannot be directly processed by most ML algorithms. 

Specifically, there were 11 categorical variables in the generic 

data category, 7 in the premium data category, 2 in the finance 

data category, and 1 categorical target variable, making 

a total of 21 categorical variables. For instance, the Policy 

Product Category, which includes categories such as Pension, 

Protection, Savings, Investment, and Children’s Plan, was 

transformed into numerical values. This conversion enabled the 

ML models to interpret the categorical data and incorporate 

it into their learning process. To convert these categorical 

variables into a numerical format, the use of encoding 

techniques was necessary.

These steps of standardising features and encoding categorical 

variables were crucial for refining the input data, ensuring 

that the models could effectively learn from the data, capture 

meaningful patterns, and make accurate predictions.

Table 24 �Variables of the insurance dataset for predicting 13th-month payment behaviour at the new 

business stage

Variable flag Category name Variable detail Variable Type

VAR0 Identification Masked Policy Identifier Unique ID

VAR1

VAR2

VAR3

VAR4

VAR5

VAR6

VAR7

VAR8

VAR9

VAR10

VAR11

VAR12

VAR13

VAR14

VAR15

VAR16

Generic data 

(Including application 

life assured basic 

information, agent 

information and 

health-related 

information)

Application Life Assured Age

Application Life Assured Education

Application Life Assured Gender

Application Life Assured Industry

Application Life Assured Marital Status

Application Life Assured Nationality

Application Life Assured Occupation

Application Life Assured Residential Status

Application Life Assured State

Application Life Assured City

Application Life Assured City Tier

Mapped Agent Branch

Mapped Agent Vintage

Life Assured Alcohol Declaration

Life Assured BMI

Life Assured Smoker Declaration

Numerical

Categorical

Categorical

Numerical

Categorical

Categorical

Categorical

Categorical

Categorical

Numerical

Numerical

Categorical

Categorical

Categorical

Numerical

Categorical

VAR17

VAR18

VAR19

VAR20

VAR21

VAR22

VAR23

VAR24

VAR25

Premium data Applicant’s Policy Rider Opted Flag (Y/N)

Application’s Payment Frequency*

Applicant’s Policy Annualised Premium

Application Sourcing Channel

Application’s Policy Contract Branch

First Premium Payment Type

Applicant’s Policy Product Category

Policy Product Name

Policy Sum Assured

Categorical

Categorical

Numerical

Categorical

Categorical

Categorical

Categorical

Categorical

Numerical

VAR26

VAR27

VAR28

Finance data Application Life Assured Income

Application’s Policy Price Sensitivity (Y/N)

Auto Debit of Premium Opted Flag (Y/N)

Numerical

Categorical

Categorical

TARGET / Paid the 13th-month Premium at New Business 

Stage (Y/N)

Categorical

*: 	 Application’s Policy Premium Payment Frequency
/: 	 not applicable
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Figure 13
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Figure 14 �Experiments designed to evaluate the impact of alternative data across Groups 1-3
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4.3 Experiment One: Impact of 
Alternative Data

To assess how well the model performed with alternative data, 

including generic, premium-related, and finance-related data, 

the three categories in Table 24 were combined into distinct 

groups to examine the impact on the likelihood of policyholders 

paying the 13th-month premium, as presented in Figure 13.

The experiment used Group 1 data, made up of generic data 

only, to examine the relationship between insurance traditional 

data and the likelihood of policyholders paying the 13th-month 

premium. Building upon Group 1, Group 2 expands the data 

complexity by incorporating the premium data to determine 

whether such data has an impact on the target variable. Group 

3 represents the highest level of data complexity, combining 

generic data, premium data, and finance data. The experiments 

for evaluating the impact of the three types of alternative data 

are illustrated in Figure 13.
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To investigate the impact of data volume on model training, 

this experiment split the insurance dataset into two sets. 

This represented a two-collaborator federation, in which 

Insurer A holds 18,000 samples (Set A) and Insurer B holds 

12,000 samples (Set B). Through FL, Insurers A and B could 

collaboratively develop a global model by aggregating their 

datasets (Set C, 30,000 samples). The performances of a 

range of ML models on Set A, Set B, and Set C were evaluated 

separately to compare the model performances of local models 

and the federated model.

4.4 Experiment Two: Impact of Data 
Volume

A scarcity of comprehensive data may hinder insurance 

providers from thoroughly studying their customers’ behaviour 

patterns. This challenge can be effectively addressed through 

data collaboration among insurance companies and the 

application of HFL. In HFL, participants share the same feature 

space, using a common set of features such as policy type 

and premium amount. Although the actual data samples differ 

among insurers, each insurer has data on these common 

features.

Figure 15 Description of Set A, Set B, and Set C for HFL

Set C

30,000

Local Model A Federated Model

Set A + Set B

Local Model B

Insurer A Insurer B

12,000

Set B
18,000

Set A

4.5 Evaluation Results

4.5.1 Performance (AUC scores) 
Using Different Machine Learning 
Algorithms

Experiment One focused on assessing the effectiveness of 

applying alternative data to the insurance business. The AUC 

metric was applied to evaluate the performance of the models. 

Generally, an AUC score above 0.7 is considered acceptable.
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Figure 16

ROC curves of ML algorithms 

applied to data Group 3 (full 

dataset)
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• �AUC scores of different ML algorithms on the 

single data group

Figure 16 illustrates the ROC curves depicting the predictions 

of each ML algorithm of policyholders paying or not paying 

the 13th-month premium on data Group 3 (full dataset). 

Generally, an AUC of 0.5 indicates a model that performs no 

better than random guessing. An AUC of 1 implies that the 

model has perfect discrimination ability, being considered an 

ideal classifier. There is no specific threshold for the AUC that 

indicates a well-functioning model.

In general, modern model mechanisms – such as ensemble 

learning algorithms like Random Forest, XGBoost, and 

Gradient Boosting, demonstrated higher predictive power than 

traditional models like KNN and Naïve Bayes. However, these 

latter traditional methods have been used for a long time and 

have solid theoretical foundations. Traditional classification 

mechanisms like Decision Tree and LR also performed 

reasonably well on this task.

• �AUC scores of ML algorithms across the 

different data groups

Table 25 presents the AUC scores for various ML algorithms 

in predicting the likelihood of policyholders paying the 13th-

month premium at the new business stage across data Groups 

1, Group 2, and Group 3. KNN achieved the lowest AUC 

scores, and XGBoost the highest (highlighted).
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Table 25 AUC scores of ML algorithms across data Groups 1-3

Group

Algorithm

Group 1 Generic data
Group 2 Generic data + 

Premium data

Group 3 Generic data + 

Premium data + Finance 

data

Logistic Regression (LR) 0.6079 0.6439 0.8474

Naïve Bayes 0.5825 0.6265 0.8416

K Nearest Neighbours (KNN) 0.5745 0.5817 0.5950

Decision Tree 0.6072 0.6415 0.8487

Random Forest 0.6469 0.6951 0.8697

Gradient Boosting 0.6566 0.7003 0.8687

XGBoost 0.6572 0.7034 0.8702

Neural Network (NN) 0.5923 0.6241 0.8392

a.	 Improved predictive performance with increased 

features and variables

AUC values generally increase from Group 1 to Group 3 

across all models. The Group 1 dataset, with the least 

information, yielded the lowest AUC scores, while the 

addition of premium data (Group 2) resulted in slightly 

higher scores.

b.	 XGBoost outperformed other algorithms across the 

data groups

XGBoost consistently achieved the best performance of 

all the algorithms across all three data groups. XGBoost’s 

Group 3 score was 0.8702, indicating good predictive 

performance.

c.	 KNN performed poorly in high dimensions and 

showed limited improvement with additional data

The KNN algorithm performed the worst of all the models, 

primarily due to its sensitivity to “the curse of dimensionality”, 

where performance degrades as the feature count 

increases. Compared to other algorithms, KNN showed 

limited improvement with additional data. When there are 

many features, data points spread out, making it harder 

to find “nearest neighbours.” Furthermore, KNN relies 

heavily on feature similarity, so if new features cannot be 

meaningfully discriminated amongst, its performance may 

not improve significantly.

d.	 NN outperformed KNN but lagged behind LR due to 

training variability

NN outperformed KNN but was surpassed by LR. NN’s 

performance variations can be attributed to several sources 

of randomness during training, including parameter 

initialisation, sample selection, and neuron dropout, as well 

as the characteristics of the loss function.

e.	 Finance data significantly boosted model 

performance, except for KNN

This dataset, which includes generic, premium, and 

financial information, achieved the highest AUC scores 

among the three groups. The finance variables captured 

essential patterns and insights that were missing in the 

generic and premium features, enabling the models to 

better understand underlying relationships and make more 

accurate predictions.
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• Conclusions

Overall, the different ML algorithms exhibited varied levels of 

predictive power. The progressive improvement in AUC scores 

across Groups 1-3 highlights the value of utilising diverse data 

sources, such as finance and premium information, to build 

more accurate and robust predictive models for the insurance 

industry.

4.5.2 Feature Importance of ML 
Algorithms

To identify the features that contributed most to the ML models 

used in the experiment, Shapley Additive Explanations (SHAP) 

were applied to extract feature importance. This powerful 

technique interprets the output of any ML model, regardless 

of its architecture or learning algorithms. However, calculating 

SHAP values in FL can be computationally expensive, especially 

for models with a large number of features, as it involves 

evaluating all possible combinations of the features.

Table 26 presents the top 10 most important features for the 

ML algorithms, excluding KNN, NN, and Gradient Boosting. 

Feature importance is not relevant for KNN and NN, as these 

rely on different mechanisms and do not provide explicit 

importance measures. Gradient Boosting is excluded because 

the top features identified by XGBoost are likely to be similar in 

a Gradient Boosting model. This is because both algorithms 

iteratively train weak models to build a strong predictive model, 

albeit with different regularisation techniques.

Table 26 Top 10 most important features in the algorithms

Rank
Logistic 

Regression
Naïve Bayes Decision Tree Random Forest XGBoost

1 VAR28 VAR28 VAR28 VAR28 VAR28

2 VAR17 VAR27 VAR26 VAR25 VAR17

3 VAR13 VAR18 VAR25 VAR17 VAR20

4 VAR18 VAR17 VAR18 VAR26 VAR12

5 VAR27 VAR11 VAR20 VAR13 VAR25

6 VAR25 VAR25 VAR10 VAR20 VAR18

7 VAR11 VAR2 VAR13 VAR10 VAR22

8 VAR20 VAR3 VAR7 VAR18 VAR26

9 VAR23 VAR7 VAR23 VAR12 VAR10

10 VAR12 VAR26 VAR24 VAR7 VAR13
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a.	 Feature importance variation: The importance 

of specific features differs among algorithms. For 

instance, VAR25 (Policy Sum Assured) is the second 

most important feature in Random Forest but is less 

significant in other algorithms.

b.	 Consistent importance of VAR28: VAR28 (Auto Debit 

of Premium Opted Flag) was consistently ranked as one 

of the most important features across all algorithms due 

to its strong influence on the likelihood of policyholders 

paying the 13th-month premium.

4.5.3 Evaluating the Impact of Data Volume

This section presents an analysis of the impact of increased data volume on the performance of various ML algorithms.

Table 27 AUC scores for the impact of data volume on ML algorithms

Model 
Set

Logistic 
Regression

Naïve 
Bayes

KNN
Decision 

Tree
Gradient 
Boosting

Random 
Forest

XGBoost
Neural 

Network

Set A 0.8551 0.8519 0.5569 0.8454 0.8676 0.8746 0.8704 0.8233

Set B 0.8542 0.8472 0.5706 0.8383 0.8671 0.8696 0.8713 0.5343

Set C 0.8555 0.8498 0.5623 0.8507 0.8760 0.8768 0.8746 0.8399

c.	 Lack of health-related features: None of the 

important features in Table 26 are health-related, such 

as VAR14 (Life Assured Alcohol Declaration), VAR15 

(Life Assured BMI), and VAR16 (Life Assured Smoker 

Declaration) in the generic data, suggesting that health 

information may have less impact on the likelihood 

of policyholders paying the 13th-month premium. 

However, this could change if the focus is shifted to 

assessing risk profiles.

a.	 AUC findings: Table 27 shows that most algorithms 

achieved higher AUC scores with the combined dataset 

(Set C) compared to Set A and Set B, indicating 

that increased data volume can enhance model 

performance. Combining heterogeneous data sources 

helps overcome the performance limitations of isolated 

datasets.

b.	 Set C performance: Set C, which includes Set A and 

Set B, consistently generated the best performance by 

all algorithms, except for Naïve Bays and KNN. Notably, 

Naïve Bayes in Set C had a lower AUC score than Set A, 

suggesting that simply adding records does not always 

improve model performance. This decline is due to the 

algorithm’s strong reliance on the assumption of feature 

independence, which can be compromised when more 

samples are added.

c.	 KNN performance issues: As discussed in the 

preceding section, the KNN model’s sensitivity to “the 

curse of dimensionality” is the reason for its performance 

being near to random (since its AUC score is close to 

0.5). Misleading information, imbalanced data, and 

duplicated records are among the factors that can 

introduce noise and negatively impact accuracy and the 

AUC.

d.	 NN limitations: NNs excel in handling unstructured 

or complex datasets, such as those relating to image 

recognition, computer vision, NLP, and time series 

forecasting, where traditional algorithms may struggle 

to find patterns or make accurate predictions. However, 

in this experiment, despite their strong feature 

extraction capabilities, NN underperformed compared 

to traditional algorithms (showing a near random result 

of 0.5343 on Set B), probably because the task was not 

complex enough to fully utilise its strengths.
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• �Conclusions

Most algorithms demonstrated acceptable performance but 

showed varying predictive capabilities. While FL is effective in 

many scenarios, it may have limitations within certain parts of 

the insurance value chain, and adding additional data sources 

does not always enhance model performance.

The selected algorithms showed diverse predictive abilities, 

emphasising the importance of selecting the right algorithm 

based on data characteristics and the specific problems being 

addressed. LR is ideal for insurers facing data scarcity, due 

to its simplicity, interpretability, and faster results compared to 

NNs, making it more efficient in certain scenarios.

4.5.4 Evaluation of the Fast-Training 
Strategy Module (FTSM)

Employing encryption in FL can significantly increase the 

processing time. To address this issue, an FTSM is proposed 

to accelerate training while maintaining privacy, as detailed in 

Section 3.3.1.2. The efficiency and effectiveness of the FTSM 

was evaluated using open-source data. A comparison was 

made between the training time per iteration of the existing 

approach using HE and the FTSM, with LR serving as the 

benchmark. The results, shown in Table 28, indicate that the 

FTSM outperforms HE in three key areas:

•	 Training time: The module significantly reduced the training 

time per iteration, achieving speeds from approximately 3.5 

to 17.6 times faster than the existing approach.

•	 Efficiency: The module demonstrated superior 

performance in terms of speed and efficiency, leading to 

potential cost savings and increased productivity in data 

processing tasks.

•	 Versatility: The module is applicable to different datasets, 

offering a versatile solution for data processing tasks.

Table 28 Comparison of training times between HE and FTSM across different datasets

Datasets
Existing Approach  

(Homomorphic Encryption)
Fast-Training Strategy Module 

(FTSM)

Insurance Dataset on Agency 

Performance67

21 seconds 6 seconds

Prudential Life Insurance Assessment68 88 seconds 5 seconds

67	 Retrieved from Kaggle: https://www.kaggle.com/datasets/moneystore/agencyperformance
68	 Retrieved from Kaggle: https://www.kaggle.com/competitions/prudential-life-insurance-assessment/overview
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Table 29 An overview of the three Proof-of-Concept use cases

Use case Purpose Participating parties

1.	 Customer Propensity 

to Purchase

•	 To enhance the accuracy 

of the analytical model 

with engagement insight of 

customer groups, in order to 

improve customer targeting 

and optimise marketing 

strategies to boost acquisition 

and retention.

•	 Insurer A (Data consumer): Provides traditional 

insurance data, including a label designed to 

evaluate the propensity of customers to acquire 

a new policy over a three-month horizon.

•	 Company B (Data provider): Provides 

anonymised, aggregated and encrypted insights 

of customer groups of particular demographics 

with certain behavioural and purchasing 

attributes.

2.	 Claim Probability •	 To construct a robust 

predictive model that 

leverages clinical data to 

accurately forecast the 

probability of insurance 

claims.

•	 Insurer C (Data consumer): Provides traditional 

insurance data, including a label indicating 

whether the customer had ever filed any 

insurance claim in the past.

•	 Company D (Data provider): Provides historical 

health data.

3.	 Renewal Probability •	 To integrate comprehensive 

insurance records with 

credit rating data to forecast 

customer renewal probability.

•	 Insurer E (Data consumer): Provides traditional 

pet insurance data, including a label used for 

evaluating the policyholder’s overall risk profile, 

to determine policy renewal.

•	 Company F (Data provider): Provides pet owners’ 

credit rating data.

The Proof-of-Concept (PoC) phase during the research focused 

on three specific use cases that leverage FL to enhance various 

aspects of insurance operations. These use cases applied 

three algorithms (Logistic Regression, Boosting, and Neural 

Networks) to train and test the model. Multiple metrics were 

used to quantify the performance benefits of the FL approach 

compared to those resulting from training individual models 

on separate local datasets. Annex A contains the detailed 

performance evaluation methodology and results.

In this FL framework, data consumers (e.g. insurers) act as 

the model training initiator, providing a dataset with prediction 

labels representing the target outcomes for training, while 

data providers from various sectors contribute unlabelled, 

anonymised and encrypted data. Participating parties have the 

flexibility to collaboratively determine the role of data consumer, 

thus ensuring that the model’s use for prediction aligns with 

relevant compliance and regulatory requirements. Table 29 

below provides an overview of the three use cases along with 

the roles of the participating parties.
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These use cases were designed to explore the technical 

feasibility of the proposed FL platform, with the goal of 

demonstrating how FL can enhance insurance operations. 

Apart from looking at model performance metrics, the analysis 

has included examining the business value of each use case, 

along with implementation considerations, practical challenges, 

and proposed solutions. Insights have also been derived from 

qualitative feedback from participating data partners and 

observations by the research team during the PoC period. 

This integrated approach has enabled a comprehensive view 

of the practical applications of FL in the insurance sector to be 

developed.

5.1 Use Case 1- Customer 
Propensity to Purchase

5.1.1 Introduction

• Background and motivation

By gaining insights into customers’ activities, interests, and 

purchasing propensity, insurers can tailor their product 

offerings to better align with customers’ needs, resulting in 

more relevant insurance solutions that enhance customer 

satisfaction and engagement. However, leveraging alternative 

data from third parties can raise data security and privacy 

challenges, especially when personally identifiable information 

(PII) or other sensitive information is shared. To address these 

challenges, a life insurance company (Insurer A) collaborated 

with a company in retail sector (Company B) to research on the 

development of propensity-to-buy AI models using aggregated 

data insight from anonymised insurance data and engagement 

data to conduct model training through FL, enabling Insurer A 

to better understand the needs of its customers and identify 

target customers for insurance products.

• Objectives

The primary objectives of the research of this use case were:

1.	 Enhanced customer targeting: To enhance customer 

targeting and optimise marketing and sales strategies to 

increase customer acquisition and retention rates.

2.	 Improved data analytics: To leverage integrated data 

for advanced analytics, enabling insights into customer 

behaviours and preferences that could inform strategic 

decision-making across the organisation and enhance 

prediction accuracy.

3.	 Optimised customer support: To use engagement 

insights of anonymised customer groups to anticipate 

customer enquiries, for proactive support and faster 

resolution times.

4.	 Cross-selling opportunities: To identify potential cross-

selling opportunities by better understanding customer 

behaviours and preferences of customer groups with 

specific attributes.

5.	 Enhanced regulatory compliance: To strengthen 

regulatory compliance by implementing robust frameworks 

for cross-sector data insight research, ensuring adherence 

to legal standards, and thus fostering trust among 

stakeholders.

6.	 Enhanced knowledge of FL: To contribute to the existing 

body of knowledge regarding the adoption of FL in the 

insurance industry, thereby advancing its application.

5.1.2 Data and Experiments

• Data description

The dataset used originated from two distinct sources. Table 

30 below provides a detailed description of the datasets used 

by Insurer A (the data consumer) and Company B (the data 

provider). In the course of the research, 1,066 matched rows 

were identified by the model, with Insurer A’s dataset containing 

17 features and Company B’s having 34 features. Together 

this makes 51 features per customer, meaning that the dataset 

is high-dimensional and allows models to capture complex 

patterns and relationships. While the 1,066 matched rows 

may seem modest in size compared to large-scale datasets, 

they nevertheless represent a meaningful sample for predictive 

modelling in the insurance domain, especially when the data is 

rich in features.
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The model was designed to predict whether a customer would 

purchase a new policy in the next three months, based on 

two years of data, with duplicate entries removed to ensure 

uniqueness. The dataset was divided into training and test sets 

according to an 8:2 ratio respectively.

Insurer A’s dataset included unique identifiers for customers, 

which are special codes generated from encrypted customer 

information. These identifiers, referred to as “key’, distinguish 

Table 30 Description of the datasets provided by Insurer A & Company B

Items
Insurer A 

(Data consumer)
Company B 

(Data provider)
Prediction Label on 
Insurer A’s dataset

Data types Traditional insurance data Alternative data

(anonymised and aggregated)

Whether the customer 

had purchased a new 

policy within the past 3 

months.
Features •	 Claim history

•	 Last interaction

•	 Last purchase

•	 Customer since

•	 Residential district

•	 Age group

•	 Astrological sign

•	 Gender

•	 Income range

•	 Industry

•	 Marital status

•	 City of living

•	 Active policy premium

•	 Active policies

•	 Lapsed policies

•	 Customer engagement tags

•	 Demographic attributes

•	 Purchase behaviour

•	 Redemption behaviour

•	 Payment behaviour

•	 Website browsing behaviour

Number of rows 

(matched)

200,000 (1,066) 200,000 (1,066)

Number of features

used

17 34

each data entry while concealing personal details, replacing 

real data with random-looking strings to ensure privacy and 

maintain uniqueness. Along with these keys and the target 

label, the dataset included a variety of features providing a 

comprehensive view of a variety of attributes for the predictive 

model. Company B’s dataset, consisting of anonymised 

data, complemented Insurer A’s dataset by adding insights 

on attributes and preferences at aggregated customer group 

levels.
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• Experimental findings

The federated model results in this research showed a 49.8% 

improvement in predictive performance compared to the 

local models69, equivalent to approximately 100 more accurate 

predictions per 1,000 samples. This positive outcome is 

attributable to the availability of a sufficient amount of diverse 

and highly relevant data insight. For the detailed experimental 

results, please refer to section 3.1 in Annex A.

i. Business value unlocked across the value chain

This use case demonstrated a substantial uplift in the accuracy 

of the Propensity-To-Buy (P2B) model. Three key areas of 

business value derived from this improvement are laid out 

below:

◇	 Improved targeting and conversion rates

With more accurate P2B predictions, an insurer can 

identify high-intent customers more reliably. This allows 

marketing teams to focus their efforts on segments most 

likely to convert, resulting in higher campaign efficiency and 

increased policy sales.

◇	 Optimised marketing spend

By reducing outreach to low-probability prospects, an 

insurer can lower its cost per acquisition. Resources can be 

reallocated to high-performing channels and personalised 

campaigns, maximising returns on marketing investment.

◇	 Tailored customer engagement

The enriched model enables an insurer to develop 

tailored product recommendations based on customers’ 

engagements and behavioural patterns. Such tailored 

recommendations can improve customer satisfaction and 

strengthen long-term customer relationships.

ii. Implementation considerations and limitations

◇	 Regulatory compliance

In cross-sector data insight research, all parties must 

navigate various regulatory requirements. Insurance 

companies must ensure that customer data used in the 

69	 The Ratio of Improvement of Federated Learning (RIFL) is a metric used to quantify the performance benefits of the FL approach compared to training individual models on separate 
local datasets. For more details of the performance evaluation methodology, please refer to Annex A section 1.

FL platform, whether operating in the cloud or on local 

premises, complies with regulatory and governmental 

standards, particularly the PDPO, and uses only aggregated 

and anonymised non-PII data, where appropriate.

In 2023, the IA published the Open API framework to promote 

data collaboration and connectivity. FL can leverage open 

APIs to access decentralised data, share model updates, 

ensure interoperability, monitor performance, and maintain 

security, thereby enhancing collaboration and maintaining 

data privacy protection.

◇	 Data management and privacy measures

Data anonymisation through removal of PII, encryption and 

aggregation protects individual identities and maintains 

privacy, while data minimisation principles ensure that 

only necessary data insight is collected and used in the 

research. Together, these measures enhance compliance 

with regulatory standards and strengthen overall data 

security and protection.

◇	 Access controls

Strict access controls safeguard data and ensure that only 

authorised personnel can access the datasets used in 

the research and the output data, thus maintaining data 

integrity and security.

◇	 In-house knowledge and skills required

Successful implementation requires full engagement from 

the business development team. A full-stack data expert is 

needed to monitor the ML model’s performance and quantify 

the generated business value. Additionally, a thorough 

understanding of legal and regulatory requirements related 

to data privacy and security is essential.

◇	 Dataset limitations in the POC research project

As a POC research project, there were inherent limitations 

regarding the dataset, including its size and diversity, which 

may have impacted the robustness of the findings.
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iii. Challenges and solutions

◇	 Challenges related to data quality and availability

a.	 Matched Sample Data Deficiencies and Data Completeness

A key challenge in this use case of this research was the 

lack of matched sample data, and data completeness 

issues. To tackle this, the training and testing datasets were 

temporarily combined to increase the sample size for model 

development. While this helped mitigate the impact of 

incomplete data, it also risked limiting the ability to evaluate 

model generalisations. To counter this, additional validation 

strategies, such as cross-validation, were employed.

Additionally, low quality fields were removed from the 

datasets, improving data integrity and ensuring the 

relevance and reliability of the remaining dataset.

b.	 Insufficient Data Processing Before Training

Another challenge encountered was insufficient data 

processing prior to training the model. Incomplete or 

poorly processed data can lead to suboptimal model 

performance, as the quality of input data directly affects 

the accuracy and reliability of predictions. Thorough data 

preprocessing, such as data cleaning and outlier detection, 

must be carried out before data is uploaded to the platform.

c.	 Risks of Bias and Inaccuracy from Missing Values

Missing values in the large dataset significantly increase the 

risks of model bias and inaccuracies, wasting computational 

resources. To address this, the solution simplified the ML 

model by removing data fields with substantial missing 

values.

◇	 Data privacy and security risks

Collecting and using Personally Identifiable Information (PII) 

in data analytics brings privacy challenges. To address 

these challenges, a unique identifier system is implemented 

on the datasets of Insurer A (data consumer) to replace real 

data with random-looking strings and concealing personal 

details. For the dataset of Company B (data provider), all PII 

were removed from the dataset before they were used for 

the research. These measures enhanced security during the 

matching process and prevented unauthorised personnel 

from inferring meaningful information from the raw data.

Additional measures adopted included:

–	 Local model training and storage: Throughout the 

research process, all datasets remain securely within 

the premises of their respective owners—data providers 

and data consumers. Only encrypted model updates 

are shared for their respective on-site deployment, 

reducing privacy risks and enhancing protection against 

data breaches.

–	 Homomorphic encryption: AES-256 (Advanced 

Encryption Standard with a 256-bit key) secured data 

by converting it into an irreversible format, allowing 

encrypted data to be processed during model 

training and throughout the research process without 

decryption.

–	 Data erasure: All output data generated from the 

model was erased from the relevant platform after the 

completion of the research for better privacy protection.

–	 Rigorous governance and review processes: 

Privacy Impact Assessments (PIA) and Information 

Security Risk Assessments (ISR) were conducted to 

ensure compliance and data security.

◇	 Platform constraints

The FL platform supports only limited model types and 

tuning options, making it less flexible. More training rounds 

and manual tuning can help improve performance, but this 

takes a lot of time, especially when training is spread across 

many locations. In production, MLOps tools can solve 

this by automating testing, tracking, and training, making 

updates easier to manage and scale.

◇	 Network and compliance issues

Data consumer and data provider often operate on 

different network infrastructures. Moreover, security 

requirements and compliance procedures required by both 

data consumers and data providers can result in a lengthy 

approval process.
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To address these challenges, the stakeholders established 

effective communication channels for proactive discussions 

on compliance and security measures. They engaged 

legal and compliance teams early in the planning stage 

to obtain professional advice and review engagement 

documentation, while also developing a standardised 

protocol to streamline the information exchange between 

diverse network infrastructures. To further address data 

privacy and security concerns, a tri-party non-disclosure 

agreement was signed along with a license evaluation 

agreement specifically for this POC project.

◇	 Model selection difficulty.

Identifying the best model for any given task is challenging, 

as model performance is heavily influenced by the 

characteristics of the data used for training and evaluation. 

Factors such as dataset size, diversity, and feature 

distribution all determine a model’s effectiveness for 

particular applications.

To overcome this challenge, stakeholders should conduct 

data profiling before model selection, ensure their model 

choice is in alignment with their particular business 

objectives, and use domain-specific evaluation metrics to 

validate the model performance.

iv. Objective evaluation

The primary objectives of this use case under the research 

project were successfully achieved. The research results 

demonstrate that improved data analytics significantly boost 

predictive power, providing deeper insights into customers’ 

behaviours and preferences and leading to better customer 

targeting, cross-selling opportunities, and customer support.

The FL platform’s privacy-preserving architecture, supported 

by robust data protection measures implemented by data 

providers and consumers, adhere to established privacy 

standards for data protection and secured information 

exchange. Nevertheless, additional measures such as regular 

audits and robust incident response plans are needed to fully 

ensure compliance and foster greater user trust.

This use case has deepened the understanding of FL among 

the insurance industry, providing insurers with valuable 

firsthand experience of its applications. Overall, it demonstrates 

FL’s ability to leverage engagement insights of anonymised 

customer groups to enhance Propensity-To-Buy models, 

offering a privacy-conscious approach to more effective 

customer targeting for the insurance sector.

5.2 Use Case 2- Claim Probability

5.2.1 Introduction

• Background and motivation

Insurance companies closely monitor the number and cost of 

claims they receive, as this information is crucial for maintaining 

financial stability, managing risk, and ensuring long-term 

profitability.

Given this, Insurer C collaborated with Company D (a one-stop 

healthcare centre) on an FL system that can develop robust 

claim models while respecting privacy. This use case aimed 

to evaluate how the addition of clinical data could affect the 

accuracy of insurance claim predictions.

• Objectives

1.	 Predictive model development: To develop a predictive 

model for forecasting insurance claims by integrating 

insurance and clinical data.

2.	 Impact analysis of clinical measurements: To evaluate 

how policyholders’ clinical data affects their likelihood of 

making insurance claims. With health insurance becoming 

increasingly important in Hong Kong, this use case sought 

to provide tools and insights for better risk management 

within the industry.

3.	 Collaboration opportunities: To foster a partnership 

between an insurer and a healthcare provider by leveraging 

shared insights and data-driven strategies to enhance 

patient care and health outcomes.

4.	 Regulatory compliance: To ensure compliance with 

privacy regulations by using FL to enable secure, compliant 

data sharing and processing.

5.	 Enhanced decision-making: To utilise predictive analytics 

to facilitate informed decision-making in underwriting and 

claims management, while also developing targeted risk 

mitigation strategies to reduce the likelihood of high-cost 

claims and enhance overall portfolio performance.
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Table 31 Description of the datasets provided by Insurer C and Company D

Items
Insurer C 

(Data consumer)
Company D 

(Data provider)
Prediction Label

Data types Traditional Insurance data Historical health data Whether the customer 

had ever filed any 

insurance claim in the 

past
Features •	 Age

•	 Gender

•	 Policy month

•	 Clinical measurements of 

patients (height, weight, fat, 

metabolic age, etc)

•	 Biomarkers of patients 

(cholesterol level, fasting 

blood glucose, etc)

Number of rows 

(matched)

1,000 (312) 403 (312)

Number of features 

used

3 36

i. Business value unlocked across the value chain

This use case demonstrated a notable improvement in the 

accuracy of insurance claim prediction models. The areas of 

potential business value derived from this enhancement are laid 

out below, highlighting tangible benefits across underwriting, 

pricing, and product development.

◇	 Improved risk assessment

More accurate predictions in claims probability help insurers 

assess risk more precisely, leading to better underwriting 

decisions and reduced loss ratios.

• Experimental findings

The results demonstrated that incorporating alternative data, 

particularly historical health data, significantly enhances the 

performance of predictive models, achieving a performance 

improvement two times better than when utilising only 

traditional data. Additionally, a notable and unexpected finding 

from this use case is that men, despite generally engaging in 

riskier behaviours, exhibited a lower likelihood of filing claims. 

This insight could prompt insurers to reassess their pricing 

strategies, product offerings and customer engagement 

approaches to ensure greater fairness, accuracy, and service 

effectiveness. For the detailed experimental results, please 

refer to section 3.2 in Annex A.

5.2.2 Data and Experiments

• Data description

Table 31 provides an overview of the dataset resulting from 

the collaboration between Insurer C (the data consumer) 

and Company D (the data provider). The dataset comprised 

1,000 rows from Insurer C and 403 from Company D. After 

confidential identity matching, 312 rows were matched, and 

the resulting dataset was split into an 8:2 ratio for training and 

validation respectively.

The dataset combined traditional insurance data from Insurer C 

with health data from Company D, excluding any missing entries. 

The number of features listed in Table 31 reflects those used 

throughout the model training cycle, with the prediction label 

focusing on whether customers had filed insurance claims.
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◇	 Optimised pricing strategies

Enhanced model performance supports more tailored 

pricing, improving competitiveness and profitability.

◇	 Product innovation

Insights from health data can inform the design of new 

insurance products that better meet customer needs, 

especially in the health and wellness segments.

◇	 Operational efficiency

Better predictions reduce manual reviews and claim 

processing time, lowering operational costs.

ii. Implementation considerations and limitations

Use Case 2 shares several implementation considerations 

and limitations with Use Case 1, including the need to comply 

with data protection regulations, safeguard privacy through 

encryption and anonymisation, effectively manage diverse 

network infrastructures, and maintain strong in-house expertise 

to ensure secure and successful deployment.

However, Use Case 2 also revealed some additional 

considerations and limitations, including:

◇	 Data quantity and quality

The accuracy of the model’s predictions depends on the 

integrity and comprehensiveness of the input data. In this 

use case, the dataset was limited to only 312 samples, 

presenting a constraint for training robust machine learning 

models. Additionally, the dataset with fewer features 

was used to reduce complexity and cost, with Insurer 

C providing 3 features and Company D 36—an unequal 

distribution that posed challenges in model training and 

performance evaluation. Given the small sample size and 

feature imbalance, it is important to consider traditional 

statistical techniques as a baseline, as they are often 

more suitable and interpretable under such constraints. 

Ultimately, ensuring a sufficient quantity of high-quality data 

and balanced features is essential for achieving meaningful 

results in FL model training.

◇	 Risk mitigation

While the model is designed to mitigate risks by predicting 

claim probabilities, it cannot eliminate these risks entirely. 

Insurance claims are influenced by many factors, some of 

which may be unforeseen or difficult to quantify. Therefore, 

the model should be viewed as a risk management tool 

rather than a definitive predictor of future claims.

iii. Challenges and solutions

◇	 Heterogeneous data sources

While larger and more diverse datasets may improve model 

performance, they also increase complexity and require 

careful data standardisation and preprocessing, which can 

be time-consuming and labour-intensive. Close partnership 

and good communication between Insurer C and Company 

D helped solve these challenges.

◇	 Operational burden during model iteration

The process of model iteration in this use case posed 

notable operational challenges, particularly due to the need 

for frequent dataset revisions and renewed consent from 

data providers. Proactive planning and efficient workflows 

can effectively address these issues. Close collaboration 

between data partners and the implementation of robust 

data governance processes can minimise the need 

for frequent dataset revisions and consent renewals. 

Additionally, automated tools and techniques can 

streamline the model iteration process, reducing the 

overall operational burden. For instance, robotic process 

automation such as UiPath can automate repetitive tasks, 

allowing users to integrate them seamlessly into the 

platform.

◇	 Adapt to diverse network infrastructures

In Use Case 2, the fact that the data partners had different 

network infrastructures introduced unexpected technical 

challenges. These included issues relating to network 

proxies and inconsistent bandwidth, which affected the 

efficiency of model updates and parameter exchanges. 

To address these issues, the FL solution must be flexible 

enough to accommodate the distinct network conditions 

and varied network infrastructures of each data partner.

Utilising lightweight, low-overhead protocols, along with 

techniques like data compression, batching, and adaptive 

transmission rates, can reduce the network strain arising 

from frequent model updates and parameter exchanges. 

Additionally, intelligent monitoring and dynamic protocol 

selection based on real-time network conditions can ensure 

the FL process remains efficient and resilient to fluctuations 

in network performance across diverse infrastructures.
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◇	 Data privacy and security risks

To mitigate potential data privacy and security risks 

associated with FL, the data partners implemented several 

control measures:

–	 Data encryption: Sensitive data was encrypted 

both at rest and in transit. Participants used AES-256 

for data at rest and TLS protocols for data in transit, 

ensuring any intercepted data would be unreadable by 

unauthorised parties.

–	 Access controls: Strict role-based access controls 

were established to limit data access to authorised 

personnel only. Multi-factor authentication (MFA) 

added an extra layer of security, reducing the risk of 

unauthorised access.

–	 Data minimisation and anonymisation: The 

data participants adhered to the principle of data 

minimisation by sharing only essential information for 

the PoC. Personal identifiers were avoided or replaced 

with anonymised IDs to protect individual identities.

–	 Secure infrastructure: The PoC environment was 

hosted on secure servers with hardened operating 

systems and up-to-date security patches. Firewalls and 

intrusion detection systems guarded against external 

threats.

–	 Employee training: All team members received regular 

training on data security best practices, confidentiality 

obligations, and protocols for handling personal and 

health information, reducing the risk of human error and 

insider threats.

–	 Incident response plan: An incident response plan 

was in place to address potential data breaches 

promptly. It included procedures for containment, 

eradication, recovery, and communication with affected 

parties and regulators.

–	 Data retention and destruction: Data was retained 

only as long as necessary for the PoC. Upon completion, 

all data was securely destroyed using industry-

compliant methods to prevent data reconstruction.

iv. Objective evaluation

The primary objectives of this use case were successfully 

achieved. A predictive model integrating insurance and clinical 

data was developed that proved effective in forecasting 

insurance claims. It showed significant performance 

improvement compared to traditional models.

Furthermore, the analysis of clinical data uncovered valuable 

insights that could help in developing innovative products 

tailored to customer needs. This use case indicates that strong 

partnerships between the insurance and health sectors have the 

potential to drive data-driven approaches that improve patient 

care and health outcomes. Finally, regulatory compliance 

was effectively maintained using FL, facilitating secure cross-

sector data collaboration while adhering to privacy regulations. 

Overall, these outcomes highlight the transformative potential 

of integrating health data in the insurance industry.

5.3 Use Case 3- Renewal Probability

5.3.1 Introduction

• Background and motivation

Insurers need to be able to accurately predict renewal 

probability in order to identify at-risk policies and effectively 

plan customer retention strategies. In this use case, Insurer 

E leveraged credit data from Company F to predict policy 

renewals for their pet insurance offerings. Incorporating credit 

information is uncommon in the insurance industry in Hong 

Kong, making this collaboration a pioneering effort that could 

set a precedent for other insurers.

• Objectives

1.	 Enhanced predictive model: To develop an accurate 

predictive model utilising advanced FL techniques to reliably 

predict customers’ renewal probabilities for insurance 

policies.

2.	 Safeguard customer privacy and compliance: To 

ensure robust protection of customer data and compliance 

with all relevant data privacy regulations throughout the 

modelling process.



Part Five: Proof-of-Concept Work

084 Whitepaper on Federated Learning / 2025

3.	 Enhance customer insights: To leverage FL and 

alternative data sources (e.g. credit data) to uncover insights 

into customer behaviour and preferences, identifying 

opportunities for tailored marketing strategies and product 

offerings that boost customer engagement.

4.	 Foster strategic partnerships: To establish collaborations 

with data providers, such as Company F, to enrich available 

data sources. This use case partnership aimed to gain 

insights from the integration of credit data and pet insurance 

renewal data.

5.	 Drive innovation in the market: To leverage advanced 

analytics and credit data to uncover insights that can drive 

innovation and foster a culture of continuous improvement.

5.3.2 Data and Experiments

Table 32 provides an overview of the dataset used in this use 

case. The credit data from Company F was synthetic testing 

data, generated to emulate real data for this use case. The 

dataset employed the encrypted HKID of the customer as the 

unique identity, with the label of evaluating the policyholder’s 

overall risk profile to determine policy renewal decisions.

The total number of rows in the dataset was 2,000 from Insurer 

E and 19,201 from Company F. After confidential identity 

matching, 1,957 rows were matched, and these matched rows 

used to participate in the training and back test phases. The 

whole matched dataset was split into an 8:2 ratio for model 

training and validation respectively.

Table 32 Description of the datasets provided by Insurer E and Company F

Items
Insurer E 

(Data consumer)

Company F 

(Data provider)
Prediction Label

Data types Traditional pet insurance data Pet owners’ credit rating data Whether the 
customer had 
renewed the 
policy.

Features Historical claim data:

•	 Age of pet
•	 Purchased product count
•	 Purchased policy count
•	 Average premium of issued 

policies
•	 Claim amount
•	 Claim ratio
•	 Purchase flow

•	 Payment history
•	 Account status credit exposure
•	 Load amount credit limit
•	 Credit utilisation
•	 Product holding (e.g. Type, 

number, credit length, new credit)
•	 Enquiry footprint
•	 Credit score
•	 Public records

Number of rows 
(matched)

2,000 (1,957) 19,201 (1,957)

Number of 
features used

10 10

Company F unexpectedly withdrew from the POC project 

before it was completed due to the cessation of its operations 

following a depletion of funds. This early exit limited the scope 

of collaboration and experimentation.

• Experimental findings

Due to the exit of Company F, Insurer E was unable to 

thoroughly test and fine-tune data features to achieve optimal 

results. Additionally, some basic data preparation issues could 

not be addressed, such as the substantial amount of data 

missing from Company F’s dataset, which prevented Insurer 

E from achieving a comprehensive understanding of the data 

landscape. This use case once again highlights the importance 

of data quality and communication among data partners in the 

context of FL.

i. Business value unlocked across the value chain

The use case sought to enhance predictive modelling through 

advanced FL techniques in order to unlock significant business 

value potential for Insurer E. The unexpected exit of Company 

F hindered thorough testing and optimisation of the predictive 

accuracy for customer renewal probabilities. However, the 

use case did underscore the importance of data-driven 

decision-making, as data privacy was upheld. This experience 

emphasises the need to prioritise data quality and effective 

communication among cross-sector data partners.
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ii. Implementation considerations and limitations

◇	 Regulatory compliance

Cross-sector data collaboration involving credit data 

in Hong Kong is governed by strict regulations, such as 

the PDPO. It mandates that organisations collect only 

necessary personal data, obtain express and voluntary 

consent if the data were to be used for a new purpose 

which is not or is unrelated to the original purpose upon 

collection, and implement robust security measures such 

as encryption and access controls. Violations may result in 

significant penalties.

The HKMA imposes additional requirements through its 

Supervisory Policy Manual, specifically the module on “The 

Sharing and Use of Consumer Credit Data through Credit 

Reference Agencies”. This involves proper governance, 

data accuracy, and consumer protection when sharing or 

using credit data by authorized institutions.

Building consumer trust requires transparency about data 

usage and confidentiality agreements. It is recommended 

that secure communication protocols for data transmission 

between devices and the central server are established, 

and privacy-preserving techniques such as differential 

privacy and secure multiparty computation are employed.

◇	 Data quality and preprocessing

This use case was characterised by missing data, a 

common issue in financial datasets which can have 

significant implications. For instance, missing data in 

an income field may suggest that an applicant is self-

employed or has inconsistent income sources, impacting 

creditworthiness assessments. Since data quality directly 

affects model performance, the data must be thoroughly 

preprocessed before training.

Key data preprocessing tasks include:

•	 Handling missing data or outliers

•	 Performing feature engineering and selection

•	 Normalising and scaling data variables

•	 Addressing class imbalances in the dataset

◇	 Regular monitoring and evaluation of model 

performance
In this use case, the model locally trained by the data 

consumer demonstrated satisfactory performance, 

suggesting that renewal probabilities could be effectively 

captured by the local data and features. Consequently, 

integrating additional data sources like credit data may not 

necessarily improve the model performance, and could 

even degrade it.

Therefore, it is important for the FL platform to allow data 

consumers to train their models locally with ML algorithms.

iii. Challenges and solutions

◇	 Data related issues
In this use case, the random selection of datasets by the 

data partners led to numerous missing fields, resulting 

in inaccurate model performance. Additionally, a lack of 

familiarity with each other’s data fields made it challenging 

to interpret the results. Data partners must clean their data 

to ensure relevance and accuracy before uploading it to 

the platform.

Furthermore, prior to model training, data partners should 

engage in thorough discussions and planning regarding 

data fields and structure to ensure consistent definitions. 

Maintaining close communication with the system developer 

is also essential for understanding system limitations and 

the uploading process.

◇	 Data security and privacy risks
To mitigate the security and privacy risks associated with 

FL, Insurer E implemented several control measures:

–	 Minimal data sharing: Only HKID numbers, a form of 

Personally Identifiable Information (PII), were included 

in the data to minimise the risk of exposing sensitive 

information.

–	 Encryption of sensitive identifiers: HKID numbers 

were encrypted using the SHA-256 hashing algorithm 

to enable secure data matching and analysis within the 

FL model without disclosing original HKID values. While 

SHA-256 is a widely adopted cryptographic method, 

it is generally recommended to apply additional 

safeguards to enhance protection against potential 

reverse techniques.

–	 Data localisation: All raw data remained within the 

organisation’s infrastructure, with no transfer to the 

data partner. This practice eliminated the risk of data 

exposure during the training process.
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Table 33 Summary of the challenges, potential risks and mitigation strategy

Challenges Potential Reason Potential Risk Mitigation Strategy

Missing value in 
datasets

•	 Uncleaned dataset

•	 Incomplete data 
collection

•	 Data entry errors

•	 Reduced accuracy of 
the model due to lack 
of information

•	 Model bias due to 
reliance on incomplete 
data

•	 Implement imputation 
techniques (mean, median, 
mode) or one-hot encoding 
to fill in missing values

•	 Conduct data preprocessing

Unpredictable 
performance 

improvements from 
additional data

•	 Less relevant dataset 
is provided

•	 Data consumer already 
has high-quality data

•	 Slows down the 
convergence of the 
federated model

•	 Time wasted in training 
useless models

•	 Use auto selection to remove 
unused features from each 
model

•	 Small batch pre-training to 
filter out the most relevant 
features

Resource-intensive 
training process

•	 Boosting calculation is 
not optimised

•	 Secrete sharing takes 
up lots of memories

•	 Long training time may 
crash the system

•	 Hyperparameter 
optimisation becomes 
impossible due to 
limited resources

•	 Select fewer columns for 
training or use a larger 
validation ratio for Boosting

•	 Small batch pre-training to 
filter only the most useful 
features

Difficulty in 
interpreting the 
model results

•	 Lack of understanding 
of data fields by data 
partners

•	 Inability to derive 
meaningful insights 
from model results

•	 Engage in comprehensive 
discussions about data 
definitions, structures, and 
context before training

•	 Establish a common 
framework and glossary of 
terms to enhance clarity 
among partners

◇	 Data provider exited during the POC

Effective model training typically necessitates multiple 

rounds of testing and fine-tuning for optimal results. 

Unfortunately, the data provider in this study exited the 

market after the initial training round due to unforeseen 

circumstances. This hindered the ability to conduct further 

training to refine and enhance the accuracy of the model. 

To address this, experiments were simulated to verify the 

findings.

◇	 Constraints of leveraging additional data

The use case also revealed that model performance is not 

necessarily enhanced by adding additional data in cases 

of poor data quality, insufficient data quantity, or irrelevant 

features. It underscored the importance of carefully 

evaluating data quantity, quality and relevance prior to 

model training.

◇	 Resource-intensive training process

The time and computation power required for the training 

process to be completed, especially for techniques like 

Boosting, can be considerable, so all participating devices 

must have sufficient computational power. Allocating 

computational and network resources effectively across 

devices helps in maintaining a balanced workload and 

optimal performance.

Table 33 summarises the challenges encountered in this use 

case, including reasons, risks and mitigation strategies.
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iv. Objective evaluation

While the objective of enhancing the predictive model was not 

fully realised due to the unexpected exit of the data provider, 

simulated experiments indicated that model performance could 

significantly improve if the missing data issues are addressed 

and multiple rounds of fine-tuning conducted.

The objective of safeguarding customer privacy and ensuring 

compliance with data regulations was successfully met. 

Furthermore, given that the integration of credit data into the 

insurance sector is relatively uncommon in Hong Kong, this 

collaboration could be a valuable reference point for future 

initiatives. Other insurers in the region could emulate this data 

collaboration model by developing similar partnerships.

5.4. Conclusion

5.4.1 Key Insights

The PoC cases demonstrated the potential of FL for the 

insurance sector in the following three areas:

1. Smarter predictive models

a) Proven effectiveness of FL

FL showed its ability to develop improved predictive models in 

most use cases through the incorporation of alternative data, 

as shown by the fact that the federated models performed 

better than the local models. Being able to more accurately 

predict claim probabilities and customer propensity to purchase 

enables insurance companies to undertake more precise 

pricing of their insurance policies, optimise their resource 

allocation, and make their marketing strategies more effective.

In addition to the use cases explored in this research, FL shows 

strong potential for broader applications across the insurance 

value chain, as indicated by prior studies and industry initiatives. 

By enabling industry-wide data collaboration, FL allows insurers 

to jointly train machine learning models while preserving the 

confidentiality of proprietary and customer information. Key 

areas where this approach is particularly promising include:

–	 Risk assessment: Collaborative modelling of underwriting 

risks and expected losses enhances predictive accuracy 

without compromising data privacy.

–	 Pricing optimization: Shared market insights support 

refined pricing strategies, enabling competitive positioning 

while safeguarding sensitive pricing structures.

–	 Fraud detection: Cross-insurer model training helps 

identify organized or syndicated fraud, fostering shared 

intelligence without exchanging raw claims data.

–	 Customer behaviour analytics: Analysing integrated 

data across functional domains (e.g. claims, transactions, 

customer interactions, and operational records) to 

identify trends and provide useful insights that allow for 

personalised services while maintaining data sovereignty 

and compliance.

Table 34 shows that its advantages are being realised in diverse 

areas in the financial sector, such as marketing, pricing, risk 

management, and fraud detection. These examples highlight 

FL’s growing strategic importance for the insurance industry, 

where secure, data-driven collaboration is a key driver of 

innovation and competitive advantage.
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Table 34 Proved benefits of FL to the financial sector

Application Key Impacts Performance Gain Collaborators Source

Marketing and 

Sales

•	 Improved cross-

selling conversion in 

bancassurance

•	 Over 50% •	 Insurers

•	 Banks

•	 China Academy 

of Information and 

Communications 

Technology (2022)70

Pricing •	 personalised pricing 

coverage expansion

•	 10% ➔ 92%,  

1.5 times 

increase in 

profits

•	 Insurers

•	 Internet 

companies

•	 WeBank71

Risk 

Management

•	 Improvement in SME 

loan risk control 

model

•	 12% •	 Banks

•	 Collaborative 

companies

•	 WeBank

Fraud 

Detection

•	 Improvement in 

cross-institutional 

fraud detection

•	 30% •	 Banks

•	 Data providers

•	 China Academy 

of Information and 

Communications 

Technology (2022)

70	 中國信息通信研究院泰爾終端實驗室, 聯邦學習場景應用研究報告, 2022.
71	 陳天健, 基於聯邦學習新技術連接數據孤島, accessed 7 August 2025, https://static001.geekbang.org/con/40/pdf/2790523233/file/陳天健-基於聯邦學習新技術連接數據孤島.pdf.

2. Collaborative cross-sector partnerships

Insurers often struggle to build robust predictive models due 

to limited customer interactions, resulting in a lack of labelled 

data. FL addresses this by enabling insurers to collaborate 

with other organisations to jointly develop ML models without 

sharing sensitive data. This approach helps reduce legal and 

operational barriers to data collaboration while supporting 

the development of new insights, such as patterns in claims, 

fraud, and customer behaviour across institutions. While FL 

has the potential to alleviate compliance challenges in data 

collaboration, strong partnerships and a high level of trust are 

essential.

3. Enhanced data privacy

FL enables insurance companies to train ML models on 

decentralised data without disclosing sensitive customer 

information, supporting strong data privacy practices and 

compliance with stringent data protection regulations. As 

the regulatory landscape continues to evolve, FL presents 

a valuable opportunity for insurers to align with emerging 

b) Importance of data quality and diversity

As with any data-driven approach, the success of FL depends 

on the quantity, quality, and diversity of the input data. The PoC 

emphasised the need for:

•	 High-quality, relevant, and diverse datasets

•	 Consistent data formats and structures across partners

•	 Thorough data preprocessing and validation

c) Strategic resource allocation

Allocating adequate resources, such as sufficient computation 

power, is also crucial for supporting comprehensive training 

and swiftly addressing technical and communication issues 

that arise during the process.

d) Tailored algorithm selection

Different algorithms have varying degrees of predictive 

capability, and data scientists or machine learning experts 

need to be available to select the most suitable algorithms.
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standards and best practices. By strengthening their internal 

compliance capabilities, fostering proactive engagement 

with regulators, and adopting advanced privacy-preserving 

techniques, insurers can further support the responsible and 

effective deployment of FL across the sector.

5.4.2 Recommendations for Effective 
Implementation

Based on the experience of the PoC and feedback from 

participants, we recommend the following to facilitate effective 

FL implementation:

• �Start with a pilot and a specific use case

Implementing FL is a complex undertaking, particularly in 

sectors like insurance where its applications are still emerging. 

Starting with a well-defined pilot allows an organisation to 

minimise risks and build a solid foundation for broader FL 

implementation. Here are some key considerations:

◇	 Pilot phase: Begin with a focused pilot project to test the 

FL model in a controlled setting.

◇	 Feasibility testing: Assess the model’s operational fit, 

including technical requirements and data availability.

◇	 Challenge identification: Use the pilot to uncover 

potential issues, such as data privacy concerns and system 

integration needs.

◇	 Communication channels: Establish clear 

communications with partners to facilitate collaboration 

and alignment on goals.

◇	 Refinement: Collect feedback to make necessary 

adjustments, enhancing methodologies and data practices 

before scaling up.

• �Ensure data quality, compatibility and availability

High-quality data that is accurate, complete, and representative 

of the target problem is a key priority. Organisations should 

implement standardised data quality validation protocols, such 

as ISO/IEC 2501272 and ISO/IEC 2502473, to ensure data quality 

and compatibility across various data sources. Additionally, 

to comply with PDPO while ensuring data availability for FL, 

for example, organisations shall inform customers about data 

usage through a Personal Information Collection Statement 

(PICS). Insurers can also follow PCPD’s recommendations to 

consider anonymising personal data in accordance with the 

recommended steps as stated in the “Guide to Getting Started 

with Anonymisation”74.

In Hong Kong, the data governance framework is guided by the 

Principles of Data Governance75 introduced by the Digital Policy 

Office (DPO) in December 2024. The government and related 

organisations also provide technical standards, including the 

IT Security Standards and Best Practices76 and the Ethical 

Artificial Intelligence Framework77, for both public and private 

institutions. Moreover, when utilising generative AI technology, 

developers, service providers, and users should refer to the 

Hong Kong Generative Artificial Intelligence (AI) Technical 

& Application Guideline released by the DPO in April 2025. 

This guideline covers essential areas including the scope and 

limitations of generative AI applications, governance principles, 

and potential risks such as data leakage, model bias, and 

system errors.

Organisations utilising geospatial data must adhere to 

established standards like ISO 1915778 for data quality 

assessment and ISO 1911579 for interoperability. These 

protocols enable organisations to minimise errors during data 

entry and processing, ensuring the reliability and integrity of 

their geospatial information while complying with regulations 

such as GDPR and maintaining secure data storage solutions.

72	 ISO/IEC 25012 is an international standard that defines a general data quality model for data retained in a structured format within a computer system. It can be used to establish data 
quality requirements, define data quality measures, or plan and perform data quality evaluations.

73	 ISO/IEC 25024 is an international standard that defines data quality measures for quantitatively measuring the data quality in terms of characteristics defined in ISO/IEC 25012. It can 
be applied to any kind of data retained in a structured format within a computer system used for any kinds of applications.

74	 Asia Pacific Privacy Authorities (“APPA”), Guide To Getting Started with Anonymisation, June 2025.
75	 In December 2024, the Digital Policy Office (DPO) launched a thematic web page on data governance, providing a one-stop resource for the government’s data governance policies. 

This page includes the Principles of Data Governance, relevant strategies, guidelines, and technical standards. https://www.digitalpolicy.gov.hk/en/our_work/data_governance/
policies_standards/policy/

76	 IT Security Standards and Best Practices refer to a set of internationally recognized guidelines and frameworks designed to help organisations manage information security effectively.
77	 The Ethical AI Framework, developed for internal use within the Hong Kong Government, guides the ethical application of AI and big data analytics in IT projects. It assists 

bureaux and departments in incorporating ethical principles and practices during planning, design, and implementation. This framework, including its guiding principles and 
assessment templates, has been revised for broader applicability, allowing other organisations to use it as a reference when adopting AI and big data analytics in their projects.  
https://www.digitalpolicy.gov.hk/en/our_work/data_governance/policies_standards/ethical_ai_framework/

78	 ISO 19157 is an international standard that provides guidelines for assessing the quality of geographic data, focusing on metrics such as accuracy, completeness, and consistency. 
It aims to ensure reliable and trustworthy geospatial information for users.

79	 ISO 19115 is an international standard that specifies the metadata schema for describing geographic information and services, enhancing data discoverability and interoperability. It 
provides guidelines for documenting data quality, ensuring effective management and sharing of geospatial datasets.
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• Foster strong partnerships

Effective implementation of FL requires close collaboration 

between solution developers and project partners. Key 

elements for strong partnerships include:

◇	 Establish clear objectives: Define specific goals to guide 

the partnership, and ensure all partners understand their 

roles.

◇	 Establish a partnership agreement: Establish a 

Non-Disclosure Agreement (NDA) or formal partnership 

agreement to outline the terms of collaboration, such as the 

roles and responsibilities of each partner, data ownership, 

intellectual property rights, confidentiality considerations, 

compliance and ethical considerations, and termination 

conditions.

◇	 Build trust through transparency: Maintain open 

communication about project developments and data 

usage to foster confidence among partners.

◇	 Utilise secure communication channels: Use encrypted 

messaging and secure data sharing platforms to protect 

sensitive information.

◇	 Conduct regular feedback sessions and meetings: 

Schedule frequent discussions and meetings to review 

progress, share insights, and address challenges early, 

strengthening relationships and reinforcing commitment to 

common goals.

• Develop robust privacy protocols

The FL solution must have robust security measures, such as 

strong access controls, encryption, and secure communication 

channels. Constant vigilance and regular security audits are 

crucial to identify and address any vulnerabilities in the solution. 

Certifications like ISO/IEC 2700180 demonstrate a commitment 

to security standards and enhance stakeholder trust.

Moreover, legal and compliance teams should ensure that the 

FL initiative adheres to relevant data protection regulations, 

such as the PDPO, particularly section 4 and the DPPs, 

80	 ISO/IEC 27001, known more commonly as ISO 27001, is the leading globally recognized information security standard, developed jointly by the International Organization for 
Standardisation (ISO) and the International Electrotechnical Commission (IEC). This certification focuses on information security management systems (ISMS) and is crucial for 
ensuring the confidentiality, integrity, and availability of data.

81	 ISO/IEC 27018 is an international standard that provides guidelines for protecting personally identifiable information (PII) in cloud computing. It specifies controls and security 
measures that cloud service providers must put in place to protect their customers’ personal data.

which outlines the principles of data protection, including the 

requirement for personal data to be collected fairly and lawfully, 

and the use of personal data be limited to or related to the 

original collection purposes only. When using cloud computing 

to process personally identifiable information (PII), users should 

also comply with ISO/IEC 2701881 by implementing strong 

data protection measures, obtaining explicit user consent, and 

maintaining transparency about data usage. Regular audits and 

risk assessments are also essential for ongoing compliance 

and building trust.

• Adopt a comprehensive platform

Successful FL implementation requires integrated solutions that 

manage the entire lifecycle effectively, from data preprocessing 

to model training and result analysis. Key components include:

◇	 Data preprocessing: Utilise platforms that automate data 

cleaning and anonymisation.

◇	 Model training: Support distributed training across nodes, 

allowing local data processing.

◇	 Result analysis: Implement advanced analytical features 

for performance insights.

◇	 Collaboration tools: Enable seamless communication 

among stakeholders.

◇	 Scalability and flexibility: Choose solutions that can 

scale and adapt to various use cases.

Prior to deployment, organisations should conduct external 

security assessments, such as the Security Risk Assessments 

and Security Audits (SRAA) and Privacy Impact Assessments 

(PIA), to identify potential security vulnerabilities and privacy risks 

associated with sharing and processing data across platforms. 

Furthermore, organisations should align their security practices 

with internationally recognised frameworks such as ISO/IEC 

27001, which provides standards for information security 

management systems, and ISACA’s COBIT framework, which 

offers guidelines for governance and management of enterprise 

IT. These frameworks ensure robust security measures and 

effective risk management when implementing FL systems.
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• Ensure infrastructure readiness

Training FL models can be computationally intensive, and 

organisations will need robust infrastructure capable of 

supporting larger volumes and more diverse datasets. This 

necessitates significant investment in IT infrastructure to ensure 

seamless operations as data volumes grow.

To ensure infrastructure readiness for a FL platform, 

organisations should:

•	 Assess their current IT capabilities for handling increased 

data.

•	 Upgrade to high-performance servers and storage.

•	 Consider scalable cloud and distributed computing 

solutions.

•	 Ensure a robust network for fast data transfer.

•	 Establish efficient data management practices.

•	 Set up monitoring tools and schedule regular maintenance.

•	 Implement strong security measures to protect data.

•	 Provide training and ongoing support for staff.

• �Ensure interoperability with existing systems

Integrating FL with legacy systems requires careful planning in 

the following areas:

◇	 Assessment of legacy systems: Evaluate existing 

systems to identify compatibility issues.

◇	 API development: Create APIs that enable FL systems to 

communicate with legacy applications.

◇	 Data standardisation: Standardise data formats across 

systems.

◇	 Gradual integration: Adopt a phased approach, starting 

with pilot projects.

◇	 Training and support: Provide training on using the new 

FL framework alongside existing systems.

◇	 Monitoring and maintenance: Establish processes for 

ongoing monitoring.

• �Translate FL improvements into business value

To effectively translate FL improvements into business value, 

several key elements should be focused on.

◇	 Enhanced data privacy: FL mitigates compliance risks 

and reduces potential costs from data breaches, fostering 

greater stakeholder trust.

◇	 Operational cost analysis: A thorough examination 

reveals significant resource savings, showcasing FL’s 

efficiency in leveraging decentralised data.

◇	 Case studies: Relevant examples illustrate FL’s real-time 

adaptability for quicker market responses.

◇	 Modelling scalability: FL shows potential for market 

expansion with minimal investment.

◇	 Performance metrics: Presenting metrics that highlight 

accuracy improvements, along with discussions on reduced 

maintenance costs and new collaboration opportunities, 

underscores how FL enhances model performance while 

driving business growth and customer satisfaction.
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5.4.3 Future Enhancements

The PoC findings reveal that the FL platform utilised represents 

a significant advancement in collaborative ML, particularly 

for insurance companies seeking to leverage alternative data 

sources without compromising data security and privacy.

To improve the effectiveness and capabilities of the platform, 

the following developments are proposed for future study and 

application:

•	 Increase upload data size limit: Extend the supported 

upload data size limit.

•	 Expand data preprocessing techniques: Provide more 

comprehensive data preprocessing options to improve 

data preparation and enhance the platform’s data handling 

capabilities.

•	 Improve model interpretability: Enhance model 

interpretability by refining feature selection methodologies, 

enabling users to better understand the factors influencing 

model predictions.

•	 Optimise model performance: Explore fine-tuning 

techniques for model parameters to improve both accuracy 

and efficiency.

•	 Incorporate diverse performance metrics: Introduce a 

range of performance metrics tailored to meet the needs of 

various business tasks.

To conclude, the PoC serves as a valuable reference for 

insurance companies looking to establish collaborative 

partnerships with cross-sector data providers utilising FL. This 

approach holds significant potential for leveraging alternative 

data sources, enhancing risk assessment, improving customer 

insights, and fostering innovative product development. 

By accessing diverse datasets, insurers can enrich their 

understanding of customer behaviour and market trends, 

driving better decision-making and leading to competitive 

advantage. However, it is imperative for insurers to conduct 

a thorough evaluation of its benefits and drawbacks to ensure 

successful implementation and alignment with organisational 

goals, as the FL is still in its infancy and has limitations.
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This section presents a high-level roadmap with possible future 

directions for implementing FL in Hong Kong’s insurance 

industry. It outlines strategic priorities in three key areas: the 

technical landscape, organisational considerations, and the 

enabling ecosystem. The roadmap aims to help developers 

create robust and scalable FL solutions, assist organisations 

in their effective implementation, and support stakeholders in 

enhancing the digital ecosystem within the insurance sector.

6.1 Technical Roadmap – 
Advancements in FL Technology

• Optimising the efficiency of FL

As an FL system grows in scale, to involve hundreds or 

thousands of clients, its efficiency needs to be optimised for 

greater scalability, responsiveness, and cost-effectiveness. 

The availability of high-performance devices has lowered 

the barriers to large-scale FL deployment. Key strategies for 

improving FL efficiency include:

1.	 Adaptive client selection: Use dynamic algorithms 

to prioritise which clients participate, based on their 

computational capabilities, network conditions, and data 

quality. Techniques such as reinforcement learning or 

energy aware multi-armed bandit approach can help in 

selecting the most suitable clients for the FL training round.

2.	 Communication-efficient protocols: Develop 

communication-efficient protocols that minimise the 

transmission size of model updates and gradients. 

Techniques such as gradient compression, pruning 

(e.g. sparse model representation, model pruning), and 

quantisation (e.g. weight quantisation, gradient quantisation) 

can minimise transmission size, boosting communication 

efficiency.

3.	 Flexible and decentralised training: Develop training 

methods that allow each participant to work at their own 

pace, without having to stay perfectly in sync with others, 

and investigate decentralised architectures to eliminate the 

need for a central coordinator, reducing communication 

bottlenecks and improving scalability.

4.	 Hardware-software co-design: Collaborate with 

hardware vendors to develop specialised FL-optimised 

hardware accelerators, like edge devices and mobile 

chipsets. Integrating such co-designed hardware-software 

solutions can further optimise FL system performance.

• Improving data privacy and security

FL faces challenges from evolving vulnerabilities and potential 

attacks. To ensure data privacy and security, organisations 

should consider the following strategies:

1.	 Continuous threat monitoring: Establish robust 

mechanisms for continuous monitoring and analysis of 

emerging threats and vulnerabilities in FL systems, focusing 

on the latest trends, attack vectors, and potential risks. This 

could include implementing anomaly detection algorithms 

that identify unusual patterns in model updates or client 

behaviour.
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2.	 Adopting industry-wide security standards: Adopt 

industry-wide security standards in Hong Kong that align 

with local regulations and international best practices. 

Collaborating with regulatory bodies like the HKMA and 

PCPD can help develop secure frameworks for cross-sector 

data sharing through FL. Before implementing FL, system 

developers and users should ensure that the platform has 

obtained relevant security certifications like ISO/IEC 27001 

and ePrivacyseal83, which demonstrate a commitment to 

data protection and raise stakeholder trust in FL technology. 

They should also reference the 3652.1-2020 – IEEE Guide 

for Architectural Framework and Application of Federated 

Machine Learning84 and 2986-2023 – IEEE Recommended 

Practice for Privacy and Security for Federated Machine 

Learning85 when developing their FL applications to 

ensure compliance with privacy, security, and regulatory 

requirements.

3.	 Encouraging cross-organisation collaboration: Foster 

collaboration and knowledge-sharing among organisations 

to enhance security measures in FL systems. Establishing 

a consortium of researchers, cybersecurity experts, and 

industry stakeholders can improve information exchange 

and facilitate collaborative research. In Hong Kong, 

partnerships with organisations like Hong Kong Cyberport 

and ASTRI can drive innovation and support joint initiatives 

to enhance FL system security.

4.	 Establishing security-focused research initiatives: 

Develop research initiatives focused on security to address 

specific vulnerabilities in FL systems. Connecting Hong 

Kong’s academic institutions with industry players can 

leverage their expertise in cybersecurity research to 

enhance system security.

83	 ePrivacyseal awards a data protection seal after conducting an in-depth audit of online and mobile products based on GDPR. It is designed for companies with no direct data 
processing operations, such as cloud services and SaaS. The certification criteria are continuously updated to ensure compliance with data protection laws. In Hong Kong, the 
Openhive Federated Learning Platform is the first enterprise-grade federated learning data network to obtain this certification.

84	 3652.1-2020 – IEEE Guide for Architectural Framework and Application of Federated Machine Learning provides a blueprint for data usage and model building across organisations 
while meeting applicable privacy, security and regulatory requirements. It defines the architectural framework and application guidelines for federated machine learning. This guide 
was published on 19 March 2021.

85	 2986-2023 – IEEE Recommended Practice for Privacy and Security for Federated Machine Learning provides recommended practices related to privacy and security for FML, 
including security and privacy principles, defense mechanisms against non-malicious failures and examples of adversarial attacks on a FML system. This document also defines an 
assessment framework to determine the effectiveness of a given defense mechanism under various settings. This document was published on 26 April 2024.

5.	 Creating testbeds for validation: Set up testbeds to 

validate privacy-preserving techniques in a controlled 

environment. In Hong Kong, these testbeds can be 

established through collaborations with research 

institutions and tech hubs like Cyberport, providing a space 

for experimentation and innovation in security practices for 

FL systems. Additionally, the Insurtech Sandbox launched 

by the IA in 2017 is a valuable platform for testing insurance 

solutions.

6.	 Adaptable and scalable defence mechanisms: Design 

resilient and adaptable FL architectures in Hong Kong 

through collaborations between local universities and 

industry, including developing protocols that incorporate 

local threat intelligence.

6.2 Organisation Roadmap – 
Promote FL Adoption

The Organisation Roadmap seeks to create an environment 

conducive to the industry adoption of FL, with a supportive 

regulatory framework, industry-wide standards and guidelines, 

and comprehensive educational programmes to build 

awareness and skills. It aims to foster collaboration among 

regulatory bodies, market participants and cross sector 

stakeholders, develop secure data-sharing infrastructure, and 

encourage research partnerships. The Organisation Roadmap 

contains the following key actions:

1.	 Education about and promotion of FL: Collaborate 

with industry associations (e.g. the Hong Kong Federation 

of Insurers (HKFI) on educational programmes to raise 

awareness of FL among insurance professionals. Through 

workshops, seminars, and online resources, highlight its 

potential benefits in risk assessment, customer insights, 

and operational efficiencies, as well as the associated risks.
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2.	 Infrastructure development: Develop a federated data 

exchange infrastructure modelled on the Commercial Data 

Interchange (CDI)86 launched by the HKMA in 2022 to 

enable secure and seamless data sharing among insurers, 

to support strong data governance and access control 

and ensure compliance with relevant regulations, thereby 

strengthening collaboration in product development and 

risk management.

3.	 Talent development and staff training: Establish 

partnerships with local universities and professional training 

institutions, such as the Vocational Training Council (VTC), 

to build a skilled workforce proficient in FL methodologies. 

Such partnerships will result in specialised training 

programmes and industry conferences for insurance 

professionals in Hong Kong, covering the technical and 

operational aspects of FL and equipping staff with the skills 

to leverage FL technologies effectively.

4.	 Partnerships with research institutions and fintech 

companies: Establish strategic partnerships with local 

research institutions and fintech companies such as 

ASTRI to drive innovation in FL applications, facilitating the 

development of tailored solutions for the insurance market, 

and promoting technology integration and scalability.

5.	 Establishment of industry-wide standards: Actively 

develop regulatory guidelines and industry standards for 

implementing innovative AI technologies such as FL in the 

insurance sector. By contributing diverse perspectives 

and insights, organisations can help ensure compliance, 

safeguard data security, and promote best practices to 

build stakeholder trust.

6.3 Ecosystem Roadmap – Cross-
sector Collaboration

The Ecosystem Roadmap aims to facilitate cross-sector 

collaboration, creating synergies that enhance the effectiveness 

of the insurance sector while contributing to the broader digital 

transformation of Hong Kong’s economy.

1.	 Promote cross-sector collaboration: Encourage 

partnerships with sectors such as healthcare, banking, 

86	 Commercial Data Interchange (CDI) is a consent-based financial data infrastructure launched by the HKMA to enhance data sharing among financial institutions. It enables the retrieval 
of commercial data, especially from small and medium-sized enterprises (SMEs), from public and private data providers. CDI supports innovative financial applications like Know-
Your-Customer (KYC), credit assessment, and risk management, promoting secure and seamless data exchange in Hong Kong.

research, and startups, to leverage diverse data sources 

and expertise. For example, collaborations with healthcare 

providers such as the Hospital Authority can enhance risk 

assessment by providing access to anonymised health 

data. Collaborations with government bodies such as the 

HKMA can facilitate regulatory frameworks that support 

data sharing and innovation.

2.	 Encourage stakeholder engagement: Engage 

customers, policymakers, and industry associations, 

including the HKIA and HKFI, to incorporate their diverse 

perspectives into FL initiatives. Consultations, forums, and 

workshops will help stakeholder needs be understood and 

address data privacy and security concerns, fostering trust 

and collaboration across the ecosystem.

3.	 Leverage existing digital infrastructure: The insurance 

sector could potentially leverage existing data sharing 

infrastructure, such as the HKMA’s CDI, to minimise the 

time and technical resources required for data exchange. 

In August 2024, the HKMA and the Digital Policy Office 

(DPO) jointly announced the full operation of CDI and the 

Government’s Consented Data Exchange (CDEG), which 

facilitates data exchange between the government and 

banks. Banks can now directly obtain company particulars 

such as registered addresses or company names to 

streamline various processes such as fraud detection. The 

Companies Registry (CR) has become the first party to 

connect to CDI through the CDEG.

In short, the FL roadmap is a multifaceted strategy to drive 

continued technical advancements, promote industry 

adoption, and foster cross-sector collaboration. Key technical 

focuses include creating efficient, scalable, and secure FL 

solutions through adaptive client selection, communication-

optimised protocols, decentralised training architectures, and 

specialised hardware. To drive adoption, the roadmap calls 

for organisational changes to align incentives, modernise data 

governance, and build internal capabilities. It also emphasises 

the importance of cross-industry cooperation to enhance 

data availability, establish common standards, and address 

emerging privacy and security threats.
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1. Platform System Requirements

The successful deployment of the FL platform requires 

specific technical infrastructure requirements to be met, for 

both hardware and software components. Table 35 outlines 

the minimum hardware and software system requirements 

for installing and running the platform. For hardware, the 

requirements include Kubernetes clusters, container registry, 

managed PostgreSQL database, and ingress controller. For 

software, the build machine needs Docker and Helm Chart, 

while the client machine should have the latest version of 

the Chrome browser. These are needed to ensure that the 

platform’s training performance, including its training speed, 

is acceptable. The items highlighted in bold in the table could 

affect performance, scalability, and reliability. Alternative 

setups will require thorough evaluation to ensure they meet 

the technical specifications, scalability needs, and compatibility 

with existing systems, and the expertise of the team available.

Table 35 Requirements for platform system deployment

Requirement Details

Hardware 

Requirements

Kubernetes Service •	 2 Kubernetes clusters, 1 node pool per  

cluster, and 1 node per node pool

•	 Kubernetes version: 1.22 or above

•	 Node Operating System: Linux

•	 CPU: 8 cores with 3GHz or above

•	 Ram: 32 GB memory or above

Container Registry •	 100GB or above storage

Database •	 Fully managed database for PostgreSQL

•	 PostgreSQL, version 13

•	 Performance configuration: Basic87, 2 vCore(s)88, 

1TB89 or above

Application Gateway/Load Balancer/Nginx 

(for ingress controller)90

/

Software 

Requirements

Build Machine •	 Docker – version 20.10 or above

•	 Helm Chart – version 3

Client Machine •	 Chrome Browser – latest version

87	 Basic refers to an entry-level performance tier provided by cloud platforms, offering essential resources at a lower cost for moderate workloads.
88	 2 vCores indicates a modest compute allocation suitable for small- to medium-scale applications, often provisioned on virtualised infrastructure managed by the cloud provider.
89	 The 1TB figure denotes the allocated persistent storage capacity for data, indexes, and logs. The memory is generally tied to the vCore configuration.
90	 By default, the platform uses a Kubernetes-native Ingress controller (such as NGINX) or the load balancing services provided by the cloud provider, with configurations based 

on environment defaults. If a dedicated hardware load balancer is required, additional evaluation of network interface specifications and bandwidth requirements should be 
conducted.
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Figure 17 shows the basic architecture of the FL platform, 

illustrating the data flow between Data Node A (the Insurer), 

Data Node B (the Data Provider), and the Coordinator Node 

(IA).

Figure 17 Platform architecture overview
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2. Performance Evaluation 
Methodology

For the use cases, the following performance metrics were 

used to evaluate the federated model results against the local 

model results in terms of effectiveness and capability:

•	 Area under the curve (AUC): AUC measures the ability 

of a model to distinguish between positive and negative 

classes. Values range from 0 to 1, with a value of 0.5 

indicating no discrimination (e.g. random guessing), and a 

value of 1 signifying perfect discrimination. In practice, an 

AUC value above 0.7 is generally considered acceptable, 

while values above 0.8 are often viewed as strong indicators 

of good model performance.

•	 Gini Index (GI): The Gini Index quantifies inequality among 

values. It ranges from 0 (the worst performance) to 1 (the 

best performance). A higher GI Index score indicates a 

better classifier performance, while a lower value suggests 

poorer performance.

•	 KS (Kolmogorov-Smirnov) Index: The KS Index 

measures the maximum difference between the cumulative 

distributions of predicted probabilities for positive and 

negative classes. A higher KS value indicates the model’s 

stronger discriminatory power, with values above 0.3 

generally considered indicative of good model performance.

•	 Mean Squared Error (MSE): MSE quantifies the average 

squared difference between predicted and actual values. 

Lower values indicate better predictive accuracy, with a 

value of 0 representing perfect predictions.

•	 Ratio of improvement of Federated Learning (RIFL): 

RIFL measures how much better the FL model performs by 

comparison with the local model. A RIFL value of greater 

than 1 indicates an improvement achieved through FL, 

while a value of less than 1 suggests no improvement.
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3. Details of Experimental Results

3.1 Use Case 1

• �Key performance metrics of local and federated 

models

Performance metric comparisons between local and federated 

models in training and back testing across varied algorithms 

(Logistic Regression, Boosting, and Neural Network) are shown 

in Table 36.

Local model results are obtained by training each participant’s 

model using the same algorithm (e.g. Logistic Regression) and 

the same federated-trained parameters, but exclusively on its 

own local dataset. These results are then compared with the 

federated model’s performance in back testing. These results 

help assess the effectiveness of the federated trained model on 

the local dataset and its potential for generalisation to unseen 

data.

a. Moderate performance in local setting

In the local setting, all algorithms delivered moderate predictive 

performance. Logistic Regression showed the highest AUC, 

the largest KS index, and the lowest MSE, suggesting it 

captured linear relationships in the data and discriminates 

between false positives and true positives most effectively. 

Boosting performed worst, with the highest MSE at 0.0369 

and the lowest AUC at 0.7033. However, Neural Network had 

a worse KS Index than Boosting, suggesting that it struggles in 

distinguishing between positive and negative classes.

b. Improved model metrics in FL

Comparing the performance metrics, such as AUC values 

in bold blue and KS Index in bold black, across all models 

in both local and federated settings reveals that FL generally 

enhanced model performance. Logistic Regression showed 

a slight improvement in AUC and Gini Index in the federated 

setting, while Boosting demonstrated the most significant 

gains, particularly in AUC, KS Index, and Gini Index, indicating 

its superior ability to leverage diverse data. Neural Network also 

showed marginal improvements in the federated setting, with a 

notable increase in the KS Index. KS Index values, highlighted 

in bold black, for three algorithms demonstrate an acceptable 

level of above 0.3.

c. FL with Boosting

Boosting shows the most significant improvement in the 

federated setting, probably due to the fact that the alternative 

data provided rich, diverse information having complex 

interactions with features from the data consumer. This 

improvement could stem from the existence of a non-linear 

relationship between the features sourced from Company B 

and Insurer A, which Boosting can handle effectively.

Table 36 Key performance metrics of local and federated models with different algorithms (Use Case 1)

Model 

Types

Local Federated

MSE AUC KS Index Gini MSE AUC KS Index Gini

Logistic 

Regression
0.0319 0.7469 0.4848 0.4937 0.0341 0.7686 0.4770 0.5372

Boosting 0.0369 0.7033 0.4837 0.4066 0.0366 0.8046 0.6304 0.6092

Neural Network 0.0360 0.7381 0.3953 0.4763 0.0355 0.7458 0.4899 0.4916
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Table 37 Ratio of improvement of FL for use case 1

Model Types GI-based RIFL MSE-based RIFL

Logistic Regression ρLR improvement = 8.80% αLR improvement = 0%

Boosting ρBoost improvement = 49.83% αBoost improvement = 0.83%

Neural Network ρNN improvement = 3.21% αNN improvement = 1.38%

• �Evaluation of the ratio of improvement of FL

The evaluation results on the ratio of improvement of FL, 

namely GI-based RIFL and MSE-based RIFL, are summarised 

in Table 37.

i. FL improvement with Boosting

The majority of the models were improved to varying degrees 

by applying FL techniques. Boosting demonstrated the most 

significant improvements in terms of GI-based RIFL, with 

a value of ρBoost improvement = 49.83%. This indicates a 

substantial relative improvement in Boosting’s performance 

under the FL approach.

ii. FL improvement with Logistic Regression

For Logistic Regression, the RIFL score was zero when 

evaluated by the Mean Squared Error (MSE), indicating that 

the federated model performed worse than the locally trained 

model. Consequently, the RIFL was capped at zero, which is 

not useful. This issue may have stemmed from an imbalance 

in the data in which some outcomes were more common than 

others, making it difficult for the model to accurately predict 

continuous values.

iii. FL improvement with Neural Network

Neural Network experienced positive improvements in both the 

GI-based RIFL and MSE-based RIFL. The GI-based RIFL for 

Neural Network was 3.21%, while the MSE-based RIFL was 

1.38%.

3.2 Use Case 2

The target of the model was to predict the probability of 

insurance claims. The incorporation of alternative data, 

specifically historical health data, had a significant impact on 

the performance of the predictive models.

• �Key performance metrics of local and federated 

models

Table 38 provides a detailed comparison of key performance 

metrics for both local and federated models using different 

algorithms.

a.	 Boosting outperformed in both local and federated 

settings, excelling in all metrics (MSE, AUC, KS 

Index, Gini). It specifically showed the lowest MSE, and 

the highest scores in AUC, Gini Index, and KS Index. 

In the context of insurance claim prediction, where 

data is typically skewed with fewer claim instances 

than non-claims, Boosting proved to be efficient. 

Because it concentrated more on incorrectly classified 

instances, it enhanced the model’s performance on the 

less represented class in this use case, namely claim 

instances.
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Table 38 Key performance metrics of local and federated models with different algorithms (Use Case 2)

Model Types

Local Federated

MSE AUC KS Index Gini MSE AUC KS Index Gini

Logistic 

Regression
0.2504 0.5308 0.0783 0.0617 0.2306 0.6534 0.2319 0.3067

Boosting 0.2621 0.5471 0.1457 0.0942 0.2081 0.7945 0.4394 0.5890

Neural Network 0.2499 0.5104 0.0434 0.0207 0.2452 0.5351 0.1125 0.0701

b.	 Federated models outperformed local models 

across all three metrics. The enhanced performance 

of federated models is likely attributable to their training 

process, which combined traditional insurance data 

from Insurer C with historical health data from Company 

D. The resulting collaborative dataset was larger and 

more diverse than the local dataset, enhancing the 

model’s performance.

c.	 AUC and Gini Index demonstrated the federated 

model’s superior predictive accuracy. The AUC 

score for the local model ranged from 0.5104 to 0.5471, 

indicating performance only slightly better than random 

guessing. By contrast, the federated model achieved 

a generally higher AUC range of 0.5351 to 0.7945, 

suggesting improved predictive capability. Notably, the 

Gini Index revealed a more pronounced performance 

gain in the federated model, highlighting its superior 

ability to distinguish between classes compared to the 

local model.

d.	 Among the three algorithms evaluated, Neural 

Networks performed the worst. In this use case, 

where there is a strong correlation between the 

prediction label and training features, simpler models 

like Logistic Regression and Boosting can adequately 

capture and explain the relationship. By contrast, 

Neural Networks typically excel in scenarios with 

weaker correlations or more complex, non-linear data 

structures.

• �Evaluation of the ratio of improvement of FL

Table 39 summarises the evaluation results, specifically the GI-

based RIFL and MSE-based RIFL.
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Table 40 �AUC scores and Gini Index of local and federated models for the simulated experiments

Model Types

Local Federated

AUC Gini Index AUC Gini Index

Logistic Regression 0.5157 0.0314 0.5718 0.1435

Boosting 0.5010 0.0020 0.6649 0.3298

Neural Network 0.5157 0.0314 0.6372 0.2744

Table 39 Ratio of improvement of FL for use case 2

Model Types GI-based RIFL MSE-based RIFL

Logistic Regression ρLR improvement > 3 times αLR improvement = 7.90%

Boosting ρBoost improvement > 5 times αBoost improvement = 20.60%

Neural Network ρNN improvement > 2 times αNN improvement = 1.91%

i. Improvements in RIFL with FL

All models exhibited positive improvements in AUC-based RIFL 

and MSE-based RIFL, demonstrating the effectiveness of FL in 

enhancing model performance. The GI-based RIFL for Logistic 

Regression achieved a remarkable increase of over 3 times 

that of the local model, while the MSE-based RIFL showed 

a notable improvement of 7.90%. Boosting experienced the 

largest gains, with the GI-based RIFL increasing by more than 

5 times that of the local model, and the MSE-based RIFL 

showing a substantial improvement of 20.60%.

ii. Higher GI-Based RIFL Compared to MSE-Based 

RIFL

The results demonstrate the substantial performance 

improvements in GI-based RIFL for all three ML models 

compared to their individual performances on separate local 

datasets. The GI-based RIFL achieved a striking increase of 

over five times, a level not observed in the MSE-based RIFL.

This can be attributed to the relationship between the Gini 

Index and AUC. If the local model’s AUC is 0.5 (indicating 

randomness), even a small improvement in AUC can lead to a 

significant increase in the Gini Index.

Simulation results
To simulate and validate the scenario that showed an extreme 

improvement in the Gini Index (GI-based RIFL), an open-source 

insurance-related dataset from Kaggle91 was collected. This 

comprised 2,000 rows and 44 features after feature selection. 

In the simulation, we assumed that Data Consumer A and Data 

Provider B are joining the training, and vertically divided the 

dataset into two parts. Data Consumer A contributed only 1 

feature, while Data Provider B contributed 43 features.

91	 https://www.kaggle.com/datasets/moneystore/agencyperformance/data
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Table 40 presents the simulated results of the AUC scores and 

Gini Index from both local and federated models. It shows that 

in the local model, all AUC scores fall within the range of 0.5010 

to 0.5157, indicating values close to 0.5. Their corresponding 

GI-based RIFLs in three algorithms demonstrate quite major 

improvements: ρLR improvement > 3 times, ρBoost improvement 

> 163 times, and ρNN improvement > 7 times. These extreme 

values confirm that when there is an unequal distribution of 

features among participating parties in FL, or when the local 

model has an AUC value close to 0.5, the federated model 

will generate a significant improvement over the local model in 

terms of the Gini Index.

3.3 Use Case 3

• �Key Performance Metrics of Local and 

Federated Models

Table 41 provides a detailed comparison of key performance 

metrics for both local and federated models using different 

algorithms. As the data provider did not proceed to Boosting, 

some results in the table are absent, shown by “/”.

Table 41 Key performance metrics of local and federated models with different algorithms (Use Case 3)

Model Types

Local Federated

MSE AUC KS Index Gini MSE AUC KS Index Gini

Logistic 

Regression
0.1586 0.9632 0.8828 0.9264 0.1573 0.9296 0.8373 0.8591

Neural Network 0.0311 0.9409 0.9927 0.8819 0.0181 0.9874 0.9661 0.9749

Boosting 0.0373 0.9241 0.8481 0.8481 /

a. Neural Network leads in local setting

In the local setting, all algorithms achieved satisfactory 

KS Index values above 0.3 and AUC scores ranging from 

0.9241 to 0.9632, with Logistic Regression demonstrating 

the best performance. However, Neural Network excelled in 

distinguishing positive and negative outcomes, evidenced by 

its lower MSE and higher KS Index compared to both Logistic 

Regression and Boosting.

b. Neural Network leads in federated setting

Neural Network outperformed Logistic Regression in the 

federated setting, exhibiting lower MSE and higher AUC (in 

bold blue), KS Index, and Gini Index. Its superior performance 

may stem from its ability to automatically capture interactions 

between insurance and credit features, such as identifying 

higher risk in policyholders with high claim counts and low 

credit scores. This is unlike Logistic Regression, which requires 

manual specification of these interactions.

c. Federated model outperforms local model

The local model here is derived from federated learning, 

which allows it to incorporate additional information from data 

partners as a form of enhancement. As a result, metrics such 

as AUC, KS Index and Gini Index may exceed those of the true 

local model trained solely by the data consumer, or even those 

of the federated model. However, the federated model always 

has a lower MSE than the local model once it has achieved 

optimal performance.

d. Incompleteness of federated model

Boosting demonstrated satisfactory local results, whereas the 

federated model remained incomplete due to the exit of the 

data provider.
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• Evaluation of the Ratio of Improvement of FL

The evaluation results, namely GI-based RIFL and MSE-based RIFL, are summarised in Table 42.

Table 42 Ratio of improvement of FL for use case 3

Model Types GI-based RIFL MSE-based RIFL

Logistic Regression ρLR improvement = 0% ρLR improvement = 0.82%

Neural Network ρNN improvement = 10.55% αNN improvement = 41.97%

Boosting / /

i.	 The results for Logistic Regression were unexpected 

in terms of Gini Index (or AUC score), with the 

incorporation of alternative data having a negative effect 

on the federated model.

ii.	 The GI-based RIFL for the Logistic Regression model 

was ρLR improvement = 0%, a lower AUC value than the 

local model. Therefore, GI-based RIFL was capped to 

0 to show its unavailability. Conversely, the MSE-based 

RIFL improvement for Logistic Regression was 0.82%, 

meaning the federated model had a 0.82% lower MSE 

than the local model.

iii.	 Notably, Neural Network showed improvements in both 

the GI-based RIFL and MSE-based RIFL. The GI-based 

RIFL improvement for Neural Network was 10.55%, 

while the MSE-based RIFL improvement was 41.97%.
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Simulation results
To replicate the scenario of a negative GI-based RIFL in Logistic 

Regression, open-source insurance-related dataset from 

Kaggle92, consisting of 2,000 rows and 53 features, was again 

utilised. On the assumption that Data Consumer A and Data 

Provider B were joining the training, the dataset was vertically 

split into two parts, with Data Consumer A contributing 14 

features and Data Provider B 39 features. Certain features have 

missing entries.

The three algorithms, Logistic Regression, Boosting, and 

Neural Network, were implemented using two distinct methods 

to handle the missing entries. The first method involves filling 

92	 https://www.kaggle.com/datasets/moneystore/agencyperformance/data

the missing year with a large number, like 999,999. Another 

method leverages the one-hot encoding technique, which 

encodes the missing entry with 0 and 1, where 0 represents 

the absence of the entry and 1 its presence.

Table 43 shows that the AUC scores for Logistic Regression, 

Boosting, and Neural Network in both local and federated 

models range from 0.8993 to 0.9731, indicating satisfactory 

performance. However, when missing values were filled with 

large numbers, the federated Logistic Regression model had 

a slightly lower AUC than the local model, while Boosting and 

Neural Network performed better in the federated setting.

Table 43 Local and federated models in different models with two missing value handling methods

Model Types
Missing value 

handling

Local Federated

MSE AUC KS Index Gini MSE AUC KS Index Gini

Logistic 

Regression

Filling with big 

number
0.1400 0.9037 0.6924 0.8074 0.1364 0.9028 0.6872 0.8057

One-Hot 

encoding
0.1429 0.8993 0.6679 0.7986 0.1271 0.9038 0.6776 0.8076

Boosting

Filling with big 

number
0.1202 0.9174 0.6641 0.8348 0.0728 0.9620 0.7924 0.9239

One-Hot 

encoding
0.1513 0.8748 0.6409 0.7496 0.0583 0.9731 0.8346 0.9463

Neural 

Network

Filling with big 

number
0.1203 0.9129 0.7001 0.8258 0.1117 0.9154 0.6993 0.8307

One-Hot 

encoding
0.1140 0.9098 0.6915 0.8195 0.1112 0.9127 0.6993 0.8253
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Table 44 Ratio of improvement of FL for the simulated experiments

Model Types

Filling with big number

GI-based RIFL MSE-based RIFL

Logistic Regression ρLR improvement= 0% αLR improvement = 2.57%

Boosting ρBoost improvement = 10.67% αBoost improvement = 39.43%

Neural Network ρNN improvement = 0.59% αNN improvement = 7.15%

Model Types

One-Hot encoding

GI-based RIFL MSE-based RIFL

Logistic Regression ρLR improvement = 1.13% ρLR improvement = 10.38%

Boosting ρBoost improvement = 26.24% ρBoost improvement = 61.47%

Neural Network ρNN improvement = 0.71% ρNN improvement = 2.46%

Table 44 reveals that incorporating features from Data Provider 

B with Data Consumer A resulted in a GI-based RIFL of  

ρLR improvement = 0%, a metric that is not informative or 

useful. By contrast, using one-hot encoding for missing 

values improved the federated model’s performance, so that it 

achieved a positive GI-based RIFL of 1.13%.

These results suggest that improperly handled missing values 

can significantly harm the federated model’s performance, 

particularly for Logistic Regression, which is sensitive to data 

quality. Unlike Neural Network, which functions as a “black 

box”, Logistic Regression relies heavily on input feature values 

for training and predictions.



Annex B: List of Acronyms

Annex B: List of Acronyms

107Whitepaper on Federated Learning / 2025

Acronyms Full Form Acronyms Full Form

APIs Application programming interfaces IoT Internet of Things

AUC Area Under the Curve KNN K-Nearest Neighbours

BDA Big data analytics KS Kolmogorov-Smirnov

CDFL Cross-device federated learning LR Logistic Regression

CIMM Confidential identity matching module ML Machine learning

CNN Convolutional Neural Networks MLP Multi-Layer Perceptron

CSFL Cross-silo federated learning MSE Mean squared error

DP Differential privacy NN Neural Network

DPPs Data Protection Principles PCPD Office of the Privacy Commissioner for 

Personal Data

EU European Union PETs Privacy-enhancing technologies

FATE Federated AI Technology Enabler PI Personal information

FL Federated learning PII Personally identifiable information

FLUTE Federated Learning Utilities and Tools for 

Experimentation

PIPL Personal Information Protection Law

FN False negative PoC Proof-of-Concept

FP False positive PSI Private set intersection

FPR False Positive Rate RIFL Ratio of Improvement of Federated 

Learning

FTL Federated transfer learning RNN Recurrent Neural Networks

FTSM Fast-training strategy module ROC Receiver Operating Characteristic

GBA Greater Bay Area SMPC Secure multi-party computation

GDPR General Data Protection Regulation TEE Trusted execution environments

GI Gini Index TN True negative

GINA Genetic Information Nondiscrimination Act 

of 2008

TP True positive

HE Homomorphic encryption TPR True Positive Rate

HFL Horizontal federated learning UBI Usage-based insurance

HKID Card Hong Kong Identity Card VFL Vertical federated learning
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Term Definition

Application programming 

interface (API)

A set of protocols, routines, and tools that allow different software applications to 

communicate with each other.

Artificial Intelligence (AI) Technology that enables computers and machines to simulate human learning, 

comprehension, problem solving, decision making, creativity and autonomy.

Big Data Analytics (BDA) The process of examining large and complex datasets to uncover hidden patterns, 

correlations and insights, often used to inform decision-making in various sectors, 

including insurance.

Common Data Interchange 

(CDI)

A next-generation financial data infrastructure that enables more efficient financial 

intermediation in the banking system and is enhancing financial inclusion in Hong 

Kong. The Hong Kong Monetary Authority (HKMA) launched a CDI in October 2022.

Collaboration Platforms Tools and frameworks that facilitate federated learning and data sharing among data 

partners.

Confidential Identify Matching 

Module (CIMM)

A newly developed module which employs a hash function and the homomorphic 

encryption technique to securely match identities across different clients, and includes 

a neutral third party to distribute the matched results.

Convolutional Neural Network 

(CNN)

A specialised deep learning architecture designed for processing structured grid-like 

data, such as images. CNNs automatically learn spatial hierarchies of features through 

convolutional operations, making them highly effective for tasks like image recognition 

and object detection.

Cross-device federated 

learning (CDFL)

A decentralised machine learning approach where models are trained collaboratively 

across a large number of devices—such as smartphones or edge devices—without 

centralising raw data.

Cross-silo Federated Learning 

(CSFL)

A decentralised machine learning approach where a small number of large, trusted 

organisations (silos) collaboratively train a shared model without directly sharing their 

raw data.

Data Anonymisation The process of removing personally identifiable information from datasets to protect 

privacy.

Data Governance Policies and practices that ensure data is managed properly, including data quality, 

data security, and compliance with regulations.

Data Node A device or entity that holds local data used for training machine learning models.
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Term Definition

Decentralised Machine 

Learning

The use of machine learning techniques in a distributed manner, where data 

processing and model training occur on multiple local devices or nodes without the 

need for a centralised server.

Deep Learning An artificial intelligence (AI) method that teaches computers to process data in a way 

inspired by the human brain. Deep learning models can recognise complex pictures, 

text, sounds, and other data patterns, and produce accurate insights and predictions.

Differential Privacy (DP) A mathematical framework for ensuring privacy in datasets by adding controlled noise 

to data or query results. It guarantees that the inclusion or exclusion of any single 

individual’s data does not significantly affect the result of an analysis or query, making 

it impossible to confidently identify individuals while preserving useful aggregate 

information.

Data Protection Principles 

(DPPs)

A set of six core rules that govern how personal data shall be collected, handled, 

stored, and used by organisations under Hong Kong’s Personal Data (Privacy) 

Ordinance (PDPO).

Edge Nodes A device located at the periphery of a network, close to data sources, that processes, 

filters, and analyses data locally.

Encryption The process of transforming readable plaintext into unreadable ciphertext to mask 

sensitive information from unauthorised users.

Federated AI Technology 

Enabler (FATE)

An open-source federated learning framework developed to enable secure, 

collaborative AI model training across multiple parties without sharing raw data.

Federated Learning (FL) A machine learning approach that enables multiple participants or devices to 

collaboratively train a shared model while keeping all the training data decentralised.

False Negative (FN) An error in statistical testing where a model incorrectly predicts the absence of a 

condition when it actually exists.

False Positive (FP) An error in statistical testing where a model incorrectly predicts the presence of a 

condition when it does not actually exist.

Federated Transfer Learning 

(FTL)

Enables collaborative model training across different organisations or devices with 

heterogeneous data, even when their datasets have non-overlapping samples and 

features.

Fast Training Strategy Module 

(FTSM)

A newly developed module that enables model updates through matrix manipulation, 

each participant independently computing their respective portion of the matrix so as 

to improve training efficiency.

Generative Adversarial 

Network (GAN)

A type of deep learning model designed to generate synthetic data that closely 

resembles real data.

General Data Protection 

Regulation (GDPR)

A comprehensive EU data privacy law that governs how organisations collect, process, 

store, and share personal data of individuals.
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Term Definition

Global Model An aggregated model that combines the insights learned from multiple local training 

models across various devices.

Gini Index (GI) Measures the degree or probability of a particular variable being wrongly classified 

when it is randomly chosen.

Gross Premiums In relation to a financial year of an insurer: a) premiums after deduction of discounts 

specified in policies, or refunds of premiums made in respect of any termination or 

reduction of risks, but before deduction of premiums for reinsurance ceded and of 

commissions payable by the insurer; and b) premiums receivable by the insurer under 

reinsurance contracts accepted by the insurer.

Hash A fixed-size string of characters generated by a cryptographic algorithm, representing 

data in a unique format, commonly used in DLT networks for data integrity.

Homomorphic Encryption (HE) A form of encryption that allows computations to be performed on encrypted data 

without first having to decrypt it.

Horizontal Federated Learning 

(HFL)

A decentralised machine learning approach where participants share the same feature 

space but have different data samples.

Internet of Things (IoT) Refers to the network of physical objects or “things” embedded with sensors, 

software, and other technologies for the purpose of collecting data and exchanging it 

with other devices and systems over the internet.

Interoperability The ability of applications and systems to securely and automatically exchange data 

irrespective of geographical, political, or organisational boundaries.

K-Nearest Neighbours (KNN) A non-parametric method that classifies a new case based on how its neighbours are 

classified.

Kolmogorov-Smirnov (KS) 

Index

Measures the maximum difference between the cumulative distributions of predicted 

probabilities for positive and negative classes.

Large Language Model (LLM) A type of machine learning model designed for natural language processing tasks 

such as language generation.

Local Training Model A machine learning model that is trained on data residing on a specific client device (data 

node) without that data being shared with a central server.

Logistic Regression (LR) A supervised machine learning algorithm used for binary classification.

Machine Learning (ML) A subset of AI that focuses on developing algorithms that enable computers to learn 

from and make predictions based on data. without being explicitly programmed.

Machine learning Operations 

(MLOps) are a set of 

practices

A set of practices that automate and simplify machine learning workflows and 

deployments.
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Term Definition

Multi-Layer Perceptron A class of feedforward artificial neural network composed of multiple layers of 

interconnected neurons.

Mean Squared Error (MSE) Measures the average squared difference between estimated values and the true 

value.

Model Updates Changes or adjustments made to a machine learning model.

Natural Language Processing 

(NLP)

A subfield of computer science and artificial intelligence (AI) that uses machine 

learning to enable computers to understand and communicate using human language.

Neural Network (NN) A machine learning programme, or model, that makes decisions in a manner similar 

to the human brain, by using processes that mimic the way biological neurons work 

together to identify phenomena, weigh options and arrive at conclusions.

Optical Character Recognition 

(OCR)

The process that converts an image of a text into a machine-readable text format.

Personal Data (Privacy) 

Ordinance (Cap. 486) (PDPO)

An Ordinance in Hong Kong that protects the privacy of individuals in relation to 

personal data, and that provides for matters incidental to or connected with data 

privacy.

Personally Identifiable 

Information (PII)

Any information connected to a specific individual that can be used to uncover that 

individual’s identity, such as HKID card number, full name, email address or phone 

number.

Privacy-enhancing 

Technologies (PETs)

Technologies, tools, techniques, and practices designed to protect the privacy of 

individuals.

Proof-of-Concept (PoC) Evidence, typically deriving from an experiment or pilot project, which demonstrates 

that a design concept, business proposal, etc. is feasible.

Private Set Intersection (PSI) A secure multiparty computation cryptographic technique that allows two parties 

holding data sets to compare encrypted versions of these sets and compute their 

intersection.

Role-based Access Controls A security model that restricts system access based on user roles rather than 

individual identities.

Ratio of Improvement of 

Federated Learning

Measures how much better a FL approach performs in comparison to a local model.

Recurrent Neural Network 

(RNN)

A type of artificial neural network designed for sequential data, such as speech.

Receiver Operating 

Characteristic (ROC) curve

A graphical plot that illustrates the performance of a classifier model at varying 

threshold values.
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Term Definition

Salt A random value added to input data (e.g. passwords) before it is processed by a 

hashing algorithm. This ensures that even if two inputs are the same, their hashed 

outputs will be different.

Shapley Additive Explanations 

(SHAP)

A method used in machine learning for explaining the output of a machine learning 

model. It is based on Shapley values from cooperative game theory and provides a 

unified approach to interpret the predictions of a wide variety of models, including 

complex deep learning models.

Secure Multi-party 

Computation (SMPC)

A subfield of cryptography with the goal of creating methods for parties to jointly 

compute a function over their inputs while keeping those inputs private.

Stochastic Gradient Descent 

(SGD)

An iterative method for optimising an objective function with suitable smoothness 

properties (e.g. differentiable).

Trusted Execution 

Environment (TEE)

An environment for executing code in a secure area of a processor.

TensorFlow Federated An open-source framework for machine learning and other computations on 

decentralised data.

True Negative (TN) An indicator in statistical testing where a model correctly predicts the negative class.

True Positive (TP) An indicator in statistical testing where a model correctly predicts the positive class.

True Positive Rate (TPR) Measures a model’s ability to correctly identify positive cases out of all actual 

positives.

Usage-based Insurance (UBI) A type of auto insurance that calculates premiums based on real-time driving 

behaviour, rather than traditional factors like age or credit score.

Voluntary Health Insurance 

Scheme (VHIS)

A policy initiative implemented by the Hong Kong Health Bureau to regulate indemnity 

hospital insurance plans provided by insurance companies to individuals. Participation 

in the scheme is voluntary for both insurance companies and consumers.

Vertical Federated Learning 

(VFL)

A privacy-preserving machine learning paradigm where different parties hold different 

features of the same set of samples.

Explainable Artificial 

Intelligence (XAI)

A set of processes and methods that allows human users to comprehend and trust the 

results and outputs created by machine learning algorithms.
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