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Executive Summary

Introduction

Data plays a crucial role in the insurance sector and in digital
transformation. However, data privacy concerns and strict data
handling regulations are hindering the development of data-
driven solutions and Al innovations in the industry. Federated
learning (FL) offers a promising solution to this problem, as
it allows insurers to leverage machine learning (ML) while
safeguarding individual data privacy.

Against this background, in March 2023 the Insurance Authority
(IA) and the Hong Kong Applied Science and Technology
Research Institute (ASTRI) undertook this research project
with the aim of exploring some potential FL applications for the

insurance industry.
The project had three stages:

e Stage 1. Platform Development: ASTRI developed an FL
platform specifically tailored for the insurance industry.

e Stage 2. Proof-of-Concept (PoC): This stage involved
data collaboration between insurers and various other
sectors in order to evaluate the platform’s efficiency and
effectiveness.

e Stage 3. White Paper: This white paper documents the
PoC stage and its findings, and discusses various FL-
related technical risks and compliance issues.

Objectives

This white paper aims to:

e Enhance the insurance industry’s understanding of FL,
with a focus on its potential to help the industry leverage
alternative data effectively;

e |dentify and address technical

considerations, and governance issues related to the

risks, compliance

implementation of FL within the insurance sector; and

e Describe some PoC applications that utilise FL to extract
insights from diverse data sources across the insurance

value chain.

Federated Learning

FL is an advanced ML technique that enables models to
be trained on decentralised datasets. Unlike traditional ML
which requires data to be centralised in a single location,
FL enables models to be trained directly on the devices or
servers where the data resides. This decentralised approach
prioritises data privacy protection, enabling compliance with
data privacy regulations while facilitating data collaboration
across organisations and sectors. For industries that handle a
lot of sensitive customer data, such as the insurance sector, FL
could be a useful tool in improving operational efficiency and
protecting data privacy when processing data.

Rather than adopting an open-source framework, this research
project has involved developing an FL platform specifically
tailored to the needs of the insurance sector. It incorporates
advanced privacy-enhancing techniques, optimised algorithms,
and robust modular architectures for improved security,
efficiency, and flexibility. Evaluation results have demonstrated
the platform’s effectiveness in improving both levels of data
protection and model performance.

As FL technology continues to advance, critical challenges
remain that include handling diverse data types, ensuring
efficient data preparation and processing, and facilitating
seamless communication across systems. These issues are
further examined in the PoC section.

Whitepaper on Federated Learning / 2025 (0] 0y pu—



Risks Management and Regulatory
Compliance

Significant amounts of personal customer information are
collected and processed by the insurance sector, making
effective risk management and regulatory compliance in data

handling crucial.

This paper identifies three primary types of risk commonly
encountered in FL: data privacy risks, model security risks, and
performance risks. Solutions for mitigating data privacy risks
include secure data storage, robust authentication, and data
minimisation techniques. Model security risks, or vulnerabilities
to adversarial attacks, necessitate the use of defences such as
differential privacy (DP) and anomaly detection. Performance
risks, which stem from data heterogeneity and commmunication
inefficiencies, can be addressed by implementing data
preprocessing and optimisation strategies.

The paper also considers major compliance issues relevant to
the use of FL in the insurance industry, including compliance
in areas such as data privacy and protection, cybersecurity,
governance frameworks, outsourcing risks, and fair customer
treatment.

Finally, this paper also addresses ethical issues relevant to the
responsible use of FL, including accountability and responsibility,
human oversight, transparency and interoperability, fairness,
robustness, safety, and security.

This paper proposes a framework for risk management,
compliance, and ethical standards that is designed to serve as a
starting point for stakeholders. It should enhance stakeholders’
understanding of best FL practices and ensure responsible
data usage, while fostering greater trust in FL applications
within the insurance industry.

e 002 Whitepaper on Federated Learning / 2025

Proof-of-Concept

Three practical use cases have been completed in the PoC,
involving three insurers and three companies from different
sectors. The first use case leveraged engagement data to
enhance the accuracy of an Al model for identifying potential
customers. The second case incorporated clinical data to
forecast the probability of insurance claims. The third utilised

credit data to forecast customer renewal probabilities.

The PoC results highlighted several benefits of FL for the
insurance industry. First, FL enables smarter predictive
models to be developed by integrating diverse data sources,
without compromising data privacy. This integration can lead
to improved accuracy in predicting claims and customer
pricing,
allocation, and marketing strategies. Second, FL facilitates

behaviour, in turn supporting better resource
secure, cross-sector collaboration by allowing institutions to
jointly train models without sharing sensitive data. This helps
overcome data silos and regulatory barriers, and delivers richer
insights and more robust models. Finally, by keeping data
decentralised, FL aligns with evolving regulatory standards and
fosters responsible Al practices, enhancing data privacy and
reinforcing customer trust in the use of their data. Overall, FL
presents a strategic opportunity for insurers to innovate and
unlock new business.

The process of developing and executing these use cases
also revealed several key factors essential for the successful
adoption of FL. Strong coordination and clear communication
between stakeholders is essential to navigate challenges
related to data privacy, model performance, and technical
integration. Establishing a partnership agreement can help
define data ownership, usage rights, and each party’s expected
contributions, thereby reducing potential misunderstandings
and promoting collaboration. Implementing a comprehensive
FL platform that manages the full data lifecycle, from data
processing to customised analysis, can improve operational
efficiency and encourage broader adoption. Furthermore,
ensuring infrastructure is scalable is essential to accommodate
increasing data volumes and computational demands.



Looking forward, cross-sector partnerships, clear regulatory

support,

robust privacy protocols, and technology

advancement will be the keys for unlocking the full potential of

FL in the insurance sector.

Structure of the Whitepaper

Part One: Alternative Data for the
Insurance Industry

This section examines the challenges faced by the
insurance industry regarding data availability and quality. It
highlights the need for high-quality data and diverse data
sources for accurate predictions, and introduces FL as a
potential solution for harnessing third-party data.

Part Two: Federated Learning in
Insurance: Exploring Risks, Regulations,
and Strategies

This part introduces what FL is, and explores its potential
risks for the insurance sector. It also addresses the
issues organisations must consider before adopting FL,
emphasising the importance of regulatory compliance and

risk management.

Part Three: Federated Learning
Infrastructure for the Insurance Industry

This section proposes a framework for implementing
FL in insurance. It discusses the need for an Insurtech
infrastructure capable of managing data sourcing,
structuring, privacy, and decision-making processes.

Part Four: Technical Evaluation of the
Proposed Framework

This part assesses the technical feasibility of the proposed
framework using open-source insurance datasets. The
evaluation examines how alternative data and varying data
volumes affect the performance of different ML models.

Part Five: Proof-of-Concept Work

This section describes three use cases developed during
the PoC phase, to show some practical applications of
the proposed framework across diverse business tasks.
[t also discusses key considerations for the successful

implementation of FL.

Part Six: Roadmap for the Future

The final part offers a roadmap for the adoption of FL in
Hong Kong. It emphasises the need for a multi-pronged
strategy, encompassing technical advancements in areas
like efficiency, scalability and security, organisational
changes to drive its adoption among insurers, and cross-
sector collaboration to enhance data availability and

collective defence against emerging threats.
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Part One:

Part One: Alternative Data for the Insurance Industry

Alternative Data for the Insurance Industry

Data plays a critical role in the insurance industry. Insurance
companies rely heavily on data to make informed decisions,
assess risks accurately, and provide personalised customer
experiences.

Expanding the use of data sources has the potential to help
the insurance industry in Hong Kong to address several
challenges that could impact its long-term growth and stability.
The industry’s over-reliance on long-term, non-linked individual
life and annuity products with significant saving and investment
elements has limited the range of insurance solutions available
to consumers, making it vulnerable to changes in customer
preferences and market conditions. Additionally, variable
underwriting performance in the general insurance market has
exposed the industry to potential volatility and external shocks.
Leveraging data analytics and emerging technologies could
help address these problems, enabling insurers to diversify their
product offerings, improve their underwriting, and enhance
their risk management.

This part gives an overview of the insurance sector landscape and
highlights the current challenges and opportunities, particularly

Table 1 Major types of insurance business

with respect to exploring diverse data sources to enhance the
efficacy and efficiency of insurance operations. It suggests the
use of federated learning (FL) as a way of insurers broadening the
data sources available for making informed business decisions

while at the same time protecting data privacy.

1.1 Challenges and Opportunities in
the Insurance Industry

1.1.1 Insurance Market Overview for
Hong Kong

The Hong Kong insurance market is a well-developed and
competitive one that encompasses various segments, which
mostly fall into two categories: general insurance and long-
term insurance. Table 1 below shows various common types
of insurances in these two categories.

The insurance industry is a major driving force in Hong Kong’s
economy. Despite the challenges posed by COVID-19 and the
subdued economic recovery that has followed, Hong Kong’s
insurance market remains highly advanced and competitive,
with impressive insurance density and penetration rates.

e types

Long-term insurance e Life and annuity e Tontines
e Marriage and birth e Capital redemption
e Linked long term e Retirement schemes

e Permanent health

General insurance e Accident e Damage to property
e Sickness e Motor vehicle liability
e Vehicles e General liability

e Fire and natural forces

Whitepaper on Federated Learning / 2025 005 mmmem



Part One: Alternative Data for the Insurance Industry

In 2024, according to the Insurance Authority’s provisional
statistics, Hong Kong had a total gross premium of HK$637.8
billion. The insurance density’ (US$8,769 or approximately
HK$68,000) and insurance penetration? rate (17%) in 2023
placed Hong Kong second and first in the world respectively®.
Figure 1 illustrates the trends in insurance density and
penetration in Hong Kong over the years. In terms of players,
Hong Kong has approximately 160 authorized insurers, six
of whom are ranked among the top 10 in the world. The
intermediaries market is also very strong, with the city having

over 120,000 licensed insurance intermediaries.

Long-term insurance business accounts for the majority
of the insurance market in Hong Kong. In 2024, the office

Figure 1 $12,000
Hong Kong'’s

insurance $10,000
market

density and $8,000
penetration®

$6,000

$4,000

$2,000

2010 2011

IIIIII|| )
$0 0%

2012 2013 2014 2015 2016 2017 2018 2019 2020

premiums?® for in-force long-term business reached HK$537.4
billion. Notably, within the non-linked business®, with-profits
business’ dominated, accounting for a significant 90.7% of
in-force office premiums, suggesting that the market tends to
favour products with savings and investment elements. New
office premiums were HK$219.8 billion, mainly composed of
HK$208.1 billion derived from non-linked individual business
and HK$11.2 billion derived from linked individual business.
Overall, mainland visitors generated $62.8 billion, accounting
for 28.6% of the total individual new business in the same year.
Figure 2 shows a more detailed market breakdown of long-

term insurance business.

25%

20%

15%

10%

2021 2022 2023

mmm Density (US$) === Penetration (%)

Swiss Re Institute, World Insurance: Stirred, and Not Shaken, July 2023.
Swiss Re Institute and the Insurance Authority.

a s W =

Insurance density refers to the ratio of insurance premiums to the total population.
Insurance penetration refers to the ratio of insurance premiums to GDP of an economy.

Office premiums in relation to a financial year of an insurer, means: a) for policies with single mode of payment, the premiums paid by policy holders during the financial year;

or b) for policies with regular mode of payment, the annualised premiums of the policies as at the valuation date or the flexible premiums paid by the policy holders during the

financial year.

6 Non-linked business refers to policies that are not linked to the stock market, meaning that their returns are not based on how the market performs. Linked business, on the other
hand, refers to policies that are linked to the stock market, with returns based on how the market performs.
7 With-profits business means business in which policy holders are entitled to participate in the distributable surplus of the insurer, in addition to receiving their contractual

benefits.

E—[0]5] Whitepaper on Federated Learning / 2025



Figure 2

Market profile of
long-term insurance
business in 2024

® Non-Linked Individual Business
Linked Long Term
Retirement Scheme

® Group Business

In 2024, including direct and reinsurance businesses, the
general insurance industry generated a total of HK$100.5
billion in gross premiums. As shown in Figure 3, the general
insurance sector has multiple insurance categories, including
property damage, accident and health, and general liability,
giving it a more diverse composition. However, the general
insurance sector’s underwriting performance fluctuates quite
significantly from year to year, as it often acts as a shock
absorber for society at large. A wide range of factors, such
as the extreme weather conditions, can influence the sector’s
financial results across multiple lines of business. Managing
these financial fluctuations effectively is essential for insurers to
maintain operational efficiency.

Notwithstanding its considerable market size and relatively
developed status, the insurance sector in Hong Kong still has
room for improvement. Currently the market is largely driven
by the long-term insurance sector, which mainly consists of
non-linked individual life and annuity products with saving or
investment elements. This indicates a potential opportunity
to diversify and expand the range of insurance offerings.
Furthermore, the fluctuating underwriting performance of
general insurance business suggests there is further room to
enhance efficiency and support growth in this sector.

Other variable and unpredictable circumstances, such as
extreme weather due to climate change, increasing geopolitical
risks and the development of competing insurance markets,

5%

Figure 3
Market profile of

general insurance
business in 2024

® Accident & Health Property Damage
General Liability Motor Vehicle

® Employees’ Compensation
Marine, Aviation, and Transport

® Pecuniary Loss

further emphasise the need for continuous adaptation and
improvement within the Hong Kong insurance industry.

One way for Hong Kong to maintain its comparative advantage
in insurance is for Hong Kong insurers to explore ways
of leveraging data across the value chain. Data analytics
and technology have the potential to provide insurers with
important insights into client behaviour, risk patterns, and
market trends, thus facilitating more accurate risk assessment,
streamlining claims processing, and enabling the development
of customised insurance solutions. Ultimately, this should result
in improved underwriting performance, enhanced customer
experience, and a boost in profitability.

1.1.2 Importance of Data in Insurance

The insurance industry is underpinned by data. Traditionally,
insurance firms have relied on internal and structured data, such
as demographic information (e.g. age, gender, occupation)
and basic health-related particulars provided by customers,
to inform their underwriting decisions, determine premiums,
assess and settle claims, and combat fraud. In today’s era of
digitalisation, these traditional datasets are increasingly being
combined with new types of data generated and collected
from sources outside the company’s own operations and
databases, such as third-party providers, internet-connected
devices, social media platforms, and other external sources,
enabling more sophisticated and comprehensive analyses to
be undertaken.

Whitepaper on Federated Learning / 2025 007 e



Part One: Alternative Data for the Insurance Industry

Furthermore, more insurance companies are turning to big
data analytics (BDA) tools such as artificial intelligence (Al) and
machine learning (ML) to enhance their efficiency and reduce
their operational costs. According to a 2025 survey conducted
by the Insurance Authority, 20% of insurers in Hong Kong have
established a strategy to steer Al adoption and are implementing
Al applications. Over half are in the exploratory or pilot phases,

while 40% plan to expand their Al investments within the next

two years. The ability to effectively collect, organise, analyse,
and utilise data has become a key differentiator for insurance
firms, offering a marked competitive edge.

As illustrated in Figure 48, rapid changes are evident throughout
the insurance value chain due to digitalisation and BDA.
They range from product design, underwriting and pricing to
marketing and distribution, claims processing and ongoing
customer relationship management.

Figure 4 Usage of big data analytics (BDA) across the insurance product lifecycle

e Personalisation of cover

e Customer-specific targeted
marketing

* Internet sales and price
comparison websites

e Social media and smartphone/
device channels for direct
distribution

e Robo-advice

Automated (including
non-human) product service
centres using robo-advice
chatbots and Al

BDA enabling prediction of
customers’ needs and
preferences

Continuous real-time customer
communication and
underwriting

Platform-based business
models

360-degree view of customers

Continuous real-time data
enabling a focus on high-value
customers

Analysis and learning from
unstructured data (e.g. voice
data)

Marketing,

Pricing and

Sales and o
Underwriting

Distribution

Product
Management

Customer
Interactions

Claims
Handling

e Telematics data (e.g. wearables, loT, smartphones,
apps) helping customers and insurers understand
and manage risks

e BDA enabling more effective verification checks,
granular and accurate pricing, and faster underwriting

e Granular, customer-specific product offerings (e.g.
usage-based insurance)

e Fraud detection using BDA
e Al and drones in assessing claims

e (laims cost efficiencies from Al/automated
assessing, optimised payouts, reduced labour costs

e BDA creating new opportunities for risk mitigation
and loss reduction partnership between insurers and

customers
e Genetic data impacting pricing and availability of
insurance products
8 International Association of Insurance Supervisors (IAIS), Issues Paper on Use of Big Data Analytics in Insurance, March 2020.
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1.1.3 Usage of Traditional Data and
its Limitations

Traditional data in insurance refers to data gathered from
internal industry sources, such as policy management systems
(e.g. application forms), claims databases, actuarial tables, and
other established data repositories within insurance companies.

Part One: Alternative Data for the Insurance Industry

This data is usually obtained directly from customers, and
is managed by the insurance companies. It is essential for
insurance operations as it enables insurers to assess risk, set
premiums, and manage policies effectively. Table 2 below
illustrates typical examples of traditional data utilised in the
Hong Kong insurance industry, classified into general insurance

and long-term insurance data types:

Table 2 Typical examples of traditional data utilised in the insurance industry

Data Type General Insurance Long-Term Insurance

Basic policy °
information supplied
by customers
medical records, etc.)

Policyholder details (age, income, gender, °
occupation, smoking and drinking habits,
health status, family medical history,

Policyholder details (age, income, gender,
occupation, health status, family history
and medical records, etc.)

e Property characteristics (geographic
location, age, size, construction type etc.)

Historical loss e (Claim frequency and severity data by e Mortality experience by age, gender, and
information business line, geography, and industry cause of death
e Loss development patterns over time e Morbidity experience for critical illness and

e (Catastrophe and disaster loss data

Actuarial data o
premiums)
e Reinsurance cost information

® Macroeconomic and industry trend data .

Different insurance products may draw on different kinds of
traditional data due to their unique characteristics and risk
profiles. For example, Accident and Health insurance in Hong
Kong, such as that provided by the Voluntary Health Insurance
Scheme (VHIS), determines premiums based on data about
an individual’s health risks, which generally varies by age and
gender. Other health-related data obtained from the application
form, including pre-existing medical conditions, family medical
history, and smoking habits, can also help assess the insured

individual’s health risks.

disabilities

Exposure data (total insured values, earned o

e Lapse and surrender rates

Exposure data (policy counts, sums
insured, premium volumes)

e Reinsurance cost information
Macroeconomic and industry trend data
(interest rates, inflation, etc.)

Property Damage insurance evaluates risks using property
characteristics, claims data, and loss history. Pet insurers,
for example, use application form data on a pet’s breed, age,
and medical history to analyse property damage risks and
determine coverage, while historical claims provide data on the
frequency and severity of incidents.

Vehicle specification data, such as model number and year,
is important for automobile insurance since it helps determine
a vehicle’s value, safety features, and risk of theft or accident.
Insurers also use driving licence records to assess risk.

Whitepaper on Federated Learning / 2025 009 e



Individual life and annuity insurance coverage and premiums
correlate with data regarding the policyholder’'s age and
financial situation. Data relating to financial variables such
as income, assets, liabilities, and expenses affect coverage,
whereas age data closely corresponds with mortality risk.
Pricing relies on actuarial data, such as mortality tables, used
to estimate mortality and life expectancy.

While traditional data plays a critical role in insurance operations,

it does have the following limitations:

¢ Limited scope: Traditional data sources focus primarily on
historical claims and policy data, and may not fully capture
emerging risks or changing customer behaviours. This
reliance can lead to potential blind spots in risk assessment
processes, as the data may not reflect the current risk
landscape or customer needs.

e Retrospective nature: Traditional data is often

retrospective, providing insights only after an incident has

occurred. This delay is particularly problematic for risk

management and fraud detection, where real-time data is

essential for effective decision-making.

e Data isolation: Data may be isolated within different
departments or systems, hindering a holistic view and
making it challenging to integrate insights across the
organisation.

Recognising these constraints, insurers are increasingly

leveraging alternative data sources to complement traditional

data in order to enhance their risk assessment capabilities and

make informed decisions more rapidly.

1.1.4 Usage of Alternative Data and
its Challenges

1.1.4.1 What is alternative data?

Alternative data refers to information sourced from outside
an organisation’s databases and operations (including social
media platforms, the Internet, wearable and non-wearable
sensors, and other external data providers) that can provide
valuable insights into the behaviour, preferences, or lifestyle
of an entity. It often includes a wide range of unstructured
information, including but not limited to social media activity,
online shopping behaviour, and sensor data from connected
devices such as Internet of Things (loT) devices.

1.1.4.2 Potential use of alternative data
in insurance operations

Alternative data has the potential to revolutionise various
sectors of the insurance industry in areas such as product
development, customer engagement and interaction,
experience monitoring, segmentation analysis and competitor
analysis®. However, regulations governing its uses in insurance
vary significantly among jurisdictions. This section explores
several types of alternative data that may be applicable to the
Hong Kong insurance industry, based on our desktop research
of the global industry landscape. The overview provided below
is not exhaustive, and further research on the benefits and
challenges associated with leveraging alternative data in the

Hong Kong insurance context is necessary.

Like traditional data, alternative data in insurance can be
categorised into several broad categories based on data
type and sources. Table 3 provides a breakdown of specific
categories and some examples of their corresponding

sources'?:
9 Society of Actuaries Research Institute, Alternative Data Usage in Life and Health Insurance: Evidence from Australia, October 2023.
10 Institute of Actuaries of India and India Insurtech Association, Alternate Data Sources in the Insurance Industry, February 2024.
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Table 3 Alternative data commonly used in insurance

Data Category Potential Application and Benefits

Health data

Financial data

Lifestyle and
behaviour data

Geospatial and
environmental
data

Other reference
data

Clinics, hospitals,
electronic health records,
wearable devices, etc.

Banks, credit rating
agencies, online payment
platforms, etc.

Online media

platforms, fitness

apps, search engine
providers, loT devices,
telecommunications, etc.

Satellite imagery,
weather data providers,
property records

Other data sources (e.g.
open-source databases)

Fitness tracker
data
Prescription
history
Telemedicine
records

Credit card
spending
patterns

Loan repayment
history

Digital payment
behaviours

Exercise routines
Website
engagement
App download
patterns
Telematics data
from connected
vehicles

Social media
activity

Home sensor
data from smart
home devices
Shopping habits

Weather data

Traffic patterns
Neighbourhood
characteristics

Market trends
and industry
reports

Publicly available
statistics
Research studies
and academic
publications

Health Insurance

* More accurate and personalised risk
assessment for customised products and
premiums.

e Early detection of health risks and
prevention, possibly leading to improved
health outcomes, reduced claims, and
stronger customer engagement.

Life Insurance

e Improved underwriting for individualised life
insurance policies tailored to policyholders’
financial needs and risk tolerance.

e Better longevity risk management

e Enhanced customer engagement and
retention via personalised financial
planning services and advice.

Automobile Insurance

e Better risk management via usage-based
insurance (UBI) products.

e Accident prevention reduces the likelihood
of claims by identifying driving patterns
and behaviours associated with higher
accident risk.

Property Insurance

e More accurate property risk assessment.

e Improved claim verification, with fewer
on-site inspections and faster claims
settlement.

Life and Health Insurance

e Better understanding of mortality and
longevity risks via the examination of
industry reports and market trends on
changing lifestyle patterns, medical
advancements, and demographic shifts.

e Refined risk assessment, benefit design
and cost management strategies by
analysing public data on disease incidence,
healthcare costs, and demographic factors.
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e Health data

As defined by the General Data Protection Regulation (GDPR)',
personal data concerning health encompasses all information
that discloses the physical or mental health status of a data
subject in the past, present, or future. Aside from the basic
health-related particulars provided by prospective policyholders
or policyholders at policy inception, insurers may use other
sources of health-related data to assess an individual’s overall
health status.

Substantial amounts of health data are generated by the
medical industry, in the form of clinical records, medical
images, genomic data, and information on health behaviour'.
Collaborating with the medical sector and leveraging health data
can help insurers more effectively manage health and mortality
risks while at the same time enhancing their performance in
areas such as modelling, underwriting accuracy, preventive

care, claims management, and product innovation.

For instance, analysing the health data from electronic health
records (EHRs) and wearable devices such as fitness trackers
can help insurers assess risk and customise coverage. In Hong
Kong, several life and health insurers'®'#'® have already deployed
points-based wellness rewards programmes through mobile
apps and wearable devices. Points-earning opportunities often
gather information on an individual’s height, weight, physical
activity (steps, pace, heart rate), sleep patterns, food choices,
blood pressure, cholesterol, and blood glucose. According to
case studies from Australia’®, these initiatives can help insurers
with their market segmentation efforts by better identifying and
targeting healthy individuals. They can also improve customer
retention, upselling, cross-selling, and customer modelling by
taking advantage of greater customer involvement. In the long
run, programme data may enable earlier and more focused

health interventions, potentially lowering future claims expenses.

¢ Financial data

Another valuable alternative data type for the industry is
financial data, which reflects an entity’s financial condition,
transactions, and creditworthiness. Such data includes credit
ratings, debt repayment history, transactional data, and other
financial metrics obtained from financial institutions. Credit
history is often used to underwrite automobile or homeowner’s
insurance policies. Some insurance companies use their own
proprietary formulas to create insurance credit scores based
on factors such as payment history, outstanding debt, length
of credit history, new credit accounts, and types of credit used.

In Hong Kong, before recommending certain life insurance

(e.g.
intermediaries are obliged to conduct a Financial Needs

policies annuities), insurers or licensed insurance
Analysis (FNA), which is a comprehensive assessment that
properly assesses the financial circumstances and needs of the
customer'. Open banking allows third-party financial service
providers to access and utilise consumer financial data with
permission via application programming interfaces (APIs). In
such cases, insurers may use these alternative financial data
sources, including records of loan repayment history, credit
card spending, investment portfolios, and property ownership,
to analyse the customer’s financial stability, risk profile,
coverage needs, and appropriate premium levels. However,
using personal financial data can raise ethical and faimess
issues, since such data often includes sensitive information,
and individuals who lack access to digital tools or credit cards
may be excluded. Furthermore, the Office of the Privacy
Commissioner for Personal Data (PCPD)’s Code of Practice
on Consumer Credit Data prohibits the use of consumer credit

data from a credit reference agency for direct marketing.

11 EU, General Data Protection Regulation (GDPR), 2018.

12 Kornelia Batko and Andrzej Slezak, The Use of Big Data Analytics in Healthcare, 2022.

13 AlA, AIA Vitality f2FZ125, accessed 5 August 2025, https://www.aia.com.hk/zh-hk/health-and-wellness/aia-vitality.

14 HSBC, Helping Customers Take Steps to Better Health, accessed 5 August 2025, https://www.hsbc.com/news-and-views/news/hsbc-news-archive/helping-customers-take-
steps-to-better-health.

15 Manulife, MOVE &I &% 2=, accessed 5 August 2025, https://www.manulife.com.hk/zh-hk/individual/products/manulifemove/about-manulifemove/move-program-and-
app.html.

16 Society of Actuaries Research Institute, Alternative Data Usage in Life and Health Insurance, October 2023.

17 Insurance Authority (IA), Guideline on Financial Needs Analysis (GL30), September 2019.
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e Lifestyle and behaviour data

Many insurance companies are utilising digitalisation to take
on a bigger role in their customers’ lives. Real-time device
trackers that monitor and collect lifestyle and behaviour data
are becoming more common in insurance. Data such as social
media activity, consumer purchasing patterns, real time device
tracker data, and telematics data from connected vehicles
is helping insurers better understand consumer habits and

preferences.

Social media data can enhance underwriting by providing
additional insights and more precise risk assessments. For
example, pet-related social media platforms often reveal
information about pet owners’ engagement with their pets and
pet lifestyles, allowing insurers to assess a pet’s living conditions
and any potential hazards and formulate customised insurance
plans.

Lifestyle and behaviour data from fitness trackers and other
wearable devices can provide insights into an individual’s
daily habits, physical activity levels, sleep patterns, and dietary
choices. For Accident & Health Insurance, insurers may utilise
this information to better understand an individual’s lifestyle
choices and to promote wellness programmes that encourage
healthy behaviours, thus lowering the risk of claims. For
Property and Damage Insurance, insurers may use data from
loT devices such as home security systems, smart thermostats,
and smoke detectors to gain insights into an individual’s lifestyle

and living conditions.

Alternative data from telematics devices or mobile applications
can help motor insurers accurately analyse driving risks, provide

individualised coverage, and promote safe driving practices.

Usage-based insurance (UBI) is a prominent example. In
the UBI process, telematics devices are put in automobiles
to monitor driving behaviour and use, and premiums are
determined based on an assessment of the driving behaviour
they reveal. Insurance rates are calculated based on a range
of parameters, including distance travelled, data time, harsh
braking and acceleration, speed, cornering behaviour, and
location. Manage-How-You-Drive (MHYD) is one type of UBI
that gives drivers real-time feedback that enables them to

improve their driving habits, potentially lowering their premiums.

e Geospatial and environmental data

Geospatial and environmental data can enhance insurance risk
assessment of specific locations and properties by providing
detailed insights from sources such as weather data providers,
satellite imagery and property records. Weather data offers
historical and real-time information on natural disasters, aiding
in accurate risk prediction and timely alerts. Satellite imagery
enables precise property assessments, damage evaluations,
and risk detection, for example by revealing proximity to
flood zones. Property records provide comprehensive details
of building characteristics, ownership, and historical claims,
crucial for evaluating structural integrity and usage patterns.
Integrating these data sources can help insurers improve their
fraud detection, and disaster response planning.

1.1.4.3 Potential benefits and issues for
the insurance value chain

Using advanced data analytics and alternative data sources in
insurance operations has a variety both of potential benefits
and challenges, as discussed below',

18 IAIS, Issues Paper on Increasing Digitalisation in Insurance and Its Potential Impact on Consumer Outcomes, November 2018.
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¢ Product development and underwriting

Utilising alternative data sources in insurance enables more
tailored insurance solutions and product innovations aimed at
underserved populations. By leveraging alternative data such
as loT-enabled fitness tracker data (which reveals health and
lifestyle choices) or sensor data (which tracks household water
usage and identifies potential leaks), insurers can gain deeper
insight into their customers, allowing for more customised
coverage options and the development of novel preventative
or situational insurance products that mitigate risks before they

result in significant harm or costly claims.

Additionally, alternative data sources enable underwriting to
be based on more granular data, which can improve accuracy
and speed up risk-specific underwriting. However, such fine
risk categorisation may affect risk pooling principles, potentially
leading to affordability issues for certain insurance products
and even the exclusion of higher-risk individuals. This could
lead to less tech-savvy or less engaged customers being
underinsured.

¢ Risk assessment and pricing

More precise pricing may be possible through the use of
alternative data sources. By incorporating additional insights
from alternative data, insurers can refine their pricing models
and assess risk factors more comprehensively. For instance,
financial data can reveal an individual’s financial stability or
level of financial responsibility, allowing insurers to offer pricing
that more closely aligns with the risk profile of the individual
policyholder.

However, there are limitations when it comes to pricing and
modifying coverage using alternative data. In automobile
insurance, variables such as the insured vehicle being driven
by someone other than the policyholder may have an impact
on data accuracy and premium calculations. It is therefore
essential for insurers to ensure that their pricing models are
robust and transparent, so that customers can understand how
these variables influence their premiums and affect the overall
coverage provided. Additionally, customers should be informed

whether participation in UBI programmes is compulsory.
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Furthermore, adding new data dimensions to long-term
insurance products with straightforward premium rates may
complicate the premium rate lookup process, making it harder
for policyholders to understand the factors driving their rates
and potentially eroding consumer trust and engagement. Thus,
it may be preferable to adopt a more balanced approach that
leverages selected, relevant data dimensions while maintaining
a relatively simple and easy-to-navigate overall premium rate

structure.

e Marketing and customer experience

The use of alternative data in insurance operations enables
insurers to engage in marketing targeted at segments that are
more likely to be interested in their offerings, thus enhancing
distribution and customer reach while reducing marketing
costs.

In Hong Kong, the significant proportion of mainland Chinese
Visitor (MCV) business underscores the need for effective
cross-boundary data transfer, especially in the context of the
Greater Bay Area (GBA) development. Hong Kong insurers
need to be able to access and utilise data on mainland Chinese
policyholders and their risk profiles in order to provide tailored
products and services for this customer segment. Seamless
cross-boundary data sharing enables insurers to better
understand MCV demographics, behaviours, and risks, and
develop insurance solutions that cater to the diverse needs
of the GBA market. This access can also enhance customer
experience by streamlining the application process, including
Know Your Customer (KYC) and underwriting procedures, as
well as improving after-sales services for MCVs.

However, potential ethical concemns associated with targeted
marketing must be addressed. Unaware of the influence
of targeted strategies, customers may end up purchasing
products that are not necessarily in their best interests. Insurers
should ensure that customers are adequately informed and

empowered to make decisions that reflect their actual needs.



1.1.4.4 Common challenges in leveraging
alternative data for insurance

As alternative data becomes increasingly prevalent, insurers
must navigate the complexities of leveraging this data in an
information-rich  environment. The following paragraphs
highlight a few of the common challenges for the insurance

sector in this respect:

¢ Regulatory compliance and ethical considerations

Hong Kong’s Personal Data (Privacy) Ordinance (Cap. 486)
(PDPO) establishes a stringent framework for data protection
in both the public and private sectors. The Data Protection
Principles (DPPs) of the PDPO govern, amongst other things,
the collection and use of personal data, and emphasise that data
should only be collected for a lawful purpose directly related to
a function or activity of the data user, and not to be used for
any purpose which is not or is unrelated to the original purpose
of collection, except with the express and voluntary consent
of the data subject. This can pose challenges for insurers
engaging in data exchange, due to strict consent requirements
in using the personal data for a new purpose. Concerns about
data breaches and security standards can further limit data
sharing. Insurers must develop secure data sharing procedures
with third-party entities, such as reinsurers or data providers, to

ensure compliance with relevant regulations.

There could also be problems with cross-boundary data
transfer when insurance companies use alternative data from
other jurisdictions. In such transfers, insurers must assess the
regulatory implications, ensure strict adherence to relevant
regulations, seek expert guidance to navigate the complexities,
and implement robust security measures to safeguard data.

Equally importantly, utilising alternative data in insurance
requires fairness and transparency. Risk assessment and
pricing approaches must be statistically sound and non-
discriminatory. Insurers must demonstrate transparency by
being able to clearly explain to customers and regulators how
the data is being leveraged in their decision-making processes.
Failure to uphold these standards can result in regulatory

sanctions, reputational damage, and customer backlash.

e Concerns over data quality and quantity

High-quality data is essential for making informed decisions, but
insurers may struggle with issues of data quality and quantity
when leveraging diverse data sources. One major issue is the
prevalence of incomplete or unverifiable data from alternative
sources, making it difficult to assess data reliability for critical
tasks like risk assessment and underwriting. Robust validation
mechanisms and thorough evaluation of the credibility of

alternative data providers are necessary in such cases.

Furthermore, the fragmentation of significant amounts of
unstructured data in diverse data sources across different
systems, formats, and organisations can potentially hinder data
integration and interpretation. To overcome these challenges,
insurers need to adopt data management practices such as
data governance, standardisation, cleansing, and validation.
They can also leverage advanced technologies like Al and
ML for the purposes of enhancing data accuracy, identifying
patterns, extracting valuable insights, and incorporating only
the most relevant information from the extensive pool of

insurance data.

e Concerns over model security and performance risks

Leveraging alternative data through Al and ML models
in insurance raises security and performance concerns.
Trustworthy models are essential to prevent bias, errors, and
unintended consequences that could affect decision-making.
Model explainability and interpretability are crucial for ensuring
transparency and regulatory compliance, particularly with

complex deep learning models.

To maintain fairness and mitigate legal and reputational
risks, insurance companies must implement robust security
measures, such as encryption and access controls, while
addressing data biases through preprocessing and regular
audits. The integration of large datasets requires substantial
computational resources, necessitating investment in scalable
infrastructure and possibly cloud-based solutions.
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Part One: Alternative Data for the Insurance Industry

Furthermore, managing data inconsistencies and outliers is
critical for enhancing model performance. Rigorous testing,
validation, and continuous monitoring will be necessary to detect
and manage performance risks, especially since alternative
data sources often lack long-term historical data for thorough
back testing. Insurers may need to rely on real-time testing
and validation, deploying models in controlled environments to
monitor their effectiveness and adapt to model drift.

In summary, organisations in the insurance industry must

establish clear guidelines for the selection, evaluation,
integration, and analysis of alternative data sources to maximise
their benefits and mitigate the associated risks. A comprehensive
framework should include parameters such as data quality,

reliability, relevance, consistency, and ethical considerations.

Figure 5 below illustrates a sample framework of the key

evaluation parameters for alternative data sources’®.

Figure 5 Key evaluation parameters for alternative data
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1.2 A Potential Solution for Data
Security and Privacy: Federated
Learning (FL)

ML has been actively explored and implemented in various
areas of the insurance industry. However, given the sensitive
nature of the data handled and the competitive landscape of
the industry, insurers typically approach ML collaboration with
a cautious and conservative mindset. To address the challenge
of data security and privacy, a potential solution lies in the

adoption of federated learning (FL). Hypothetical and real FL
use cases, along with their problem-solution-impact analyses,
will be presented in Part Four and Part Five.

FL is a revolutionary branch of Al that enables decentralised
machine learning, allowing for privacy-preserving data sharing
across sectors. Unlike traditional ML approaches that require
centralising data in a single location, FL enables models to
be trained directly on the devices or servers where the data
resides. In traditional ML, clients send raw data to a central

19 Institute of Actuaries of India and India Insurtech Association, Alternate Data Sources, February 2024.
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server for model training. By contrast, FL allows clients to
send only model update parameters® to the central server.
This means that participating insurance companies can
collaboratively train models without sharing raw customer
data, and can access additional data sources to enhance
their models and gain new insights by collaborating with other
companies and industries. This approach has the potential to
significantly enhance insurance model accuracy and efficacy,
improving customer experience and business outcomes. The
below example illustrates how FL works:

e Example: FL for pneumonia detection

Imagine three hospitals want to build a machine learning model
that can detect pneumonia. Each hospital holds private patient
records, such as X-rays, lab results, and symptoms, but privacy

regulations prevent this data from being shared externally.

To address this, they adopt FL. Instead of sharing raw patient
data, each hospital shares only model updates, adjustments to
the machine learning model’s internal settings that reflect how
different medical indicators should be weighted.

The process unfolds in the following steps:

1. Distribute a base model: A basic machine learning model
is shared with all participating hospitals. It begins with
random parameters and must learn which clinical features

are most predictive of pneumonia.

2. Local training with private data: Each hospital trains the
model locally using its own patient data, such as X-rays, lab

results, and symptoms. Based on clinical outcomes:

e Hospital A reduces the weight of “cough” as it proves

unreliable.

e Hospital B increases the weight of “fever” due to

strong correlation.

e Hospital C boosts the importance of “cloudy chest

X-ray” as a key indicator.

These updates are derived from private datasets but do not
expose any raw patient information.

. Share model updates (mathematical adjustments

in weightings and parameters) only without sharing
raw patient data: Hospitals send back only the changes
made to the model’s internal settings, such as “decrease
weight for cough” and “increase weight for fever”, without

exposing any raw patient data.

. Aggregate improvements: A central server aggregates

the updates from all hospitals. Contributions from hospitals
with larger datasets or more accurate results may carry
more weight in the final model.

. Generate insights without exposing data: The refined

model (Global Model) captures collective medical insights,
such as which symptoms are most predictive of pneumonia,
without accessing or exposing any hospital’s patient data.

. Share the improved model: The Global Model is

redistributed to all hospitals, enabling each to benefit from
shared intelligence while maintaining full control over their

own data.

20 In the context of federated learning (FL), a parameter refers to the numerical values within a machine learning model that are adjusted during training. These parameters, such

as weights and biases in neural networks, dictate how the model makes predictions.
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As shown in Figure 6, FL enabled the three hospitals to
co-develop a highly accurate pneumonia detection model
without ever sharing raw patient data. Each hospital trained
the base model on its own X-rays, lab results, and symptom

records, then contributed only mathematical weight updates.

By aggregating these privacy-preserving adjustments, the
Global Model captures collective medical insights such as the
true predictive power of fever and cloudy chest X-rays while

safeguarding patient confidentiality.

Figure 6 Example of Federated Learning for developing a Global Model for pneumonia detection
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The use of alternative data sources in the insurance industry
often raises significant concerns about data privacy and ethical
use, creating a challenge for insurers who need to comply
with stringent data privacy regulations like the Personal Data
(Privacy) Ordinance (Cap. 486) (PDPO) in Hong Kong and
the GDPR. FL offers a solution to this challenge. By enabling
model training without the need to centralise sensitive data, it
helps insurers address the privacy and compliance concerns
associated with alternative data. Furthermore, its scalable and
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efficient nature can be particularly beneficial for processing
and extracting insights from the large, diverse alternative data
sources that insurers often work with. Many of these alternative
data sources may be too costly or impractical to centralise,
making a decentralised approach like FL essential. The key
benefit of combining FL and alternative data is the ability to
unlock valuable insights and drive innovation in a scalable and
efficient manner, while also addressing critical privacy and
compliance concerns for the insurance industry.



1.2.1 What Challenges Can FL
Potentially Solve?

A typical FL platform enables multiple parties to jointly train a
ML model on their decentralised data, thus addressing data

security, model security, and technological constraints when
utilising alternative data and sharing data with third parties. As
shown in Table 4 and elaborated upon in the following sections,
an FL platform can potentially solve challenges such as data
privacy, data quantity, and model security issues.

Table 4 What challenges can a typical FL platform potentially solve?

A. Regulatory compliance and ethical considerations

Challenges of utilising alternative data Addressed by a typical FL platform?

1. Data privacy

Alternative data sources often contain personal information
that raises privacy concerns. Regulatory requirements, such
as GDPR and PDPO, impose restrictions on the collection
and use of personal data.

2. Cross-boundary data transfers

When utilising alternative data in insurance, there are
cross-boundary data transfer issues, such as varying data
protection regulations, consent requirements, and data
localisation rules.

3. Fairness and transparency

There is a risk of bias or discrimination if the data sources
or algorithms used to analyse the data are not carefully
monitored and regulated.

Yes.

FL allows collaborative models to be trained on
decentralised data. This preserves data privacy and helps
comply with regulatory requirements. Additionally, the

FL platform often integrates advanced techniques such

as data anonymisation and encryption to enhance data
privacy. However, under the PDPO, encrypted data or data
that has not yet been fully anonymised may still constitute
“personal data”, so long as it is reasonably practicable to
ascertain the identity of an individual therefrom or when
combined with other information held by the data user.
Insurance companies should therefore implement a robust
set of data protection measures to ensure responsible
handling of personal data, including strict access controls
and audit trails, and where applicable, obtain explicit,
informed consent from customers for the intended use of
the data.

Partially.

FL localises data and reduces security risks by only
exchanging model updates instead of raw data. However,
insurance firms must take additional measures to address
jurisdictional differences, such as conducting a thorough
assessment, ensuring adherence to regulations, seeking
expert guidance, and implementing robust security
measures.

Partially.

The FL platform may evaluate the contributions of

the training results to assess the fairness of the data
sources. Insurance companies should ensure that the
data and analytics they use for decision-making clear

an extremely high bar in terms of fairness, transparency,
and explainability. They have a fundamental obligation to
their customers and regulators to demonstrate a solid,
unbiased basis for their underwriting decisions. To avoid
unfair treatment of customers, it is crucial for insurers to
actively monitor and address any potential biases or unfair
outcomes that may arise from the platform’s analytics.
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Table 4 What challenges can a typical FL platform potentially solve?

B. Data quality and quantity

Challenges of utilising alternative data Addressed by a typical FL platform?

4. Data quality

Diverse datasets may come in various formats, making it
challenging to integrate and analyse the data effectively.
If the alternative data sources have missing data or large
variances, they can compromise the output of the model.

5. Data quantity

The cardinal principle of data minimisation emphasises
that only a sufficient and relevant amount of personal data
should be collected for the intended purpose. This can lead
to limited or insufficient data for analysis and decision-
making processes.

6. Data credibility and reliability

Not all alternative data sources provide verified information
or disclose their underlying sources, which may result in
potentially misleading results.

7. Data relevancy
Many alternative data sources may not align with

insurance-specific use cases. Filtering out non-relevant
data can be a challenging exercise for insurance players.
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No.

FL does not inherently address all quality challenges, but
the platform develops standardised data formats and
protocols to facilitate data integration and interoperability.
While FL employs data processing and feature engineering
techniques such as normalising data, removing outliers,
and inputting missing values to enhance data quality, it is
important for insurers to prioritise local data preprocessing
before engaging in FL to ensure optimal results. By
conducting the necessary preprocessing steps, insurers
can address specific data quality concerns and improve
the overall effectiveness of FL in their operations.

Yes.

FL enables distributed data processing and model
compression. This allows for efficient analysis and
interpretation without the need for centralised data storage
and reduces the burden of transferring large amounts of
data. Data providers should shoulder the responsibility

of implementing the principle of data minimisation while
ensuring they provide the efficient and relevant data
necessary for accurate model training.

Not applicable.

Data providers should bear the responsibility of ensuring
that the datasets are credible and reliable. This involves
evaluating the reputation, accuracy, and track record of
the sources providing the alternative data.

Not applicable.

The FL platform does not have functions that could

filter non-relevant data. Insurance firms should develop
effective data preprocessing and filtering techniques

to incorporate only relevant and useful data into their
analysis. Data providers who fail to provide relevant data
may face limitations in their ability to participate as data
contributors.



Table 4 What challenges can a typical FL platform potentially solve?

C. Model security and performance risks

Challenges of utilising alternative data Addressed by a typical FL platform?

8. Model security

Model trainings that involve diverse datasets may have a
higher risk of unauthorised access or malicious attacks.

9. Model performance and efficiency

Analysing a large volume of data requires substantial
processing power and computational resources. These
challenges can impact the overall performance and
efficiency of the model process.

10. Lack of historical data for back testing

The lack of data archives or historical data in many
sources poses challenges for back testing the long-term
effectiveness of data usage.

e Enhance data privacy and security

FL trains models locally on devices or servers, significantly
reducing privacy risks by keeping sensitive data on-site and
sharing only encrypted model updates. This decentralised
approach enhances protection against data breaches and
unauthorised access, ensuring that data remains under the
control of participating organisations. FL aligns with the GDPR’s
data minimisation principle by keeping raw training data
decentralised and preventing unauthorised reuse of personal
information. In Hong Kong, the PCPD, in its Guidance on
Ethical Development and Use of Al, identifies FL as one of the
possible techniques that can minimise the amount of personal
data in Al model training by avoiding unnecessary data sharing.
However, insurance companies must ensure compliance
with relevant regulatory requirements when leveraging FL in
their operations. Throughout the FL implementation process,

Yes.

The FL platform incorporates robust defence mechanisms
to prevent insider threats or back door risks. The database
is fully managed by the client at their local/dedicated
premises, and data is encrypted.

Partially.

FL has the potential to address model performance and
efficiency by facilitating the analysis and interpretation

of large-scale decentralised datasets and incorporating
features to optimise computation time and reduce
communication costs. However, there are limitations on
the ML algorithms that can be used in the FL context,
which may result in suboptimal algorithm choices. Insurers
should continuously evaluate the performance of selected
ML algorithms within the FL framework for improvement.

Not applicable.

To mitigate this risk, insurance companies can explore
alternative approaches such as conducting real-time
testing and validation of models using current data.

it is recommended that insurance companies undertake a
comprehensive review of the regulatory landscape and work
closely with legal and compliance teams.

e Overcome data quantity challenges

Insurance companies in Hong Kong may face limitations such
as limited bandwidth, network latency, and heterogeneous
computing resources when utilising a variety of data sources.
A typical FL platform accommodates these constraints by
allowing local model training on individual devices or servers.
This decentralised approach leverages existing infrastructure
and computing resources, enabling participants to train models
effectively within their technological limitations. It overcomes
data quantity challenges by enabling collaboration and the
pooling of diverse datasets without sharing raw data, leading
to a larger and more diverse dataset for model training.
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e Mitigate model security and performance risks

An FL platform may incorporate secure aggregation techniques
to combine model updates from multiple participants. These
techniques leverage cryptographic protocols to ensure that
the aggregated model remains secure and protected during
the aggregation process. Additionally, FL enables collaborative
model training with diverse datasets, enhancing model
performance by capturing a broader range of data patterns
and insights. This approach also supports iterative model
improvement through continuous collaboration and updates,

allowing for ongoing refinement and validation.

1.2.2 Benefits of FL for the Insurance
Industry

Despite its promise, it is essential to recognise that FL is
still a nascent and developing field. The tangible benefits
and long-term return on investment (ROI) associated with
its implementation can vary widely based on specific use
cases, industry contexts, and the nuances of implementation.
Emerging research has documented qualitative advantages
and successful use cases of FL across various sectors,

including healthcare, financial services, and loT applications.

As FL has the capacity to address the challenges associated
with leveraging diverse data sources, including alternative
data sources, it has the ability to unlock the potential of these
valuable data assets, translating them into a myriad of benefits
for the insurance industry throughout the value chain. The

following sections elaborate on some of these benefits.

® Improved risk assessment

FL enables insurers to utilise a broader range of data points,
leading to more precise risk evaluations. By enhancing insurers’
ability to identify potential risks early in the underwriting phase,
it allows for proactive mitigation of issues before they escalate.
Research has found that using FL can improve loss event
prediction by from 30% to 87.5% while also addressing privacy

In addition to identifying patterns across groups of customers,
FL also has the potential to be applied to individual risk
assessment. This can be done by adapting the global model
through fine-tuning, and refining it with individual-specific data.
As new data becomes available, the continuous learning of the
models can lead to adjustments in the risk assessments for
individuals, aligning the model better with an individual’s specific
situation. The key lies in striking the right balance between the
theoretical potential of FL and its practical implementation.

e Enhanced customer experience

FL enables insurance companies to leverage insights from
various data sources to enhance customer experience
throughout the sales process journey, from marketing to post-
sales activities.

Prior to sales, FL can harness big data to gain insights into
potential customers’ behaviour and preferences in order to
target marketing campaigns at the right audience, increasing
engagement and satisfaction while offering services that are
closely aligned with the needs of specific customer groups. It
can also strengthen channel relationships by enabling insurers
to train data analytics models with their broker partners, helping
them to track the status of applications, manage compensation
and commissions, and monitor progress towards business

goals.

In terms of underwriting, by using FL to analyse data from
across different nodes, such as real-time data collected from
smartphone apps, insurers can also provide tailor-made
products that reflect a customer’s unique circumstances on
the basis of a better understanding of individual risk profiles

and preferences.

Finally, FL boosts data availability by means of its decentralised
training on diverse datasets and its real-time updates, which
enhance fraud detection and facilitate faster, more reliable

settlements.
concerns?'.
21 Society of Actuaries Research Institute, Federated Learning for Insurance Companies, February 2024.
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e Improved operating efficiency

By utilising FL, insurers can leverage decentralised data sources
to automate various tasks without compromising data privacy,
thus streamlining traditional operations such as underwriting
and claims processing. Automated underwriting processes
lead to faster turnaround times, enabling insurers to handle a
larger volume of applications in a shorter period. This results in
areduction in operational costs associated with manual labour,
paperwork, and data processing.

FL also enhances the efficiency of data analytics. For one thing,
it facilitates local data processing, thereby minimising the need
for costly centralised infrastructure and reducing the risk of
data breaches during transfer. Also, it allows for the continuous
improvement of models by using real-time data from personal
devices such as smartphones or wearable devices, leading to
the development of more accurate and up-to-date models that
can adapt to changing market conditions, emerging risks, and
evolving customer behaviours.

¢ Innovation and competitive edge

By harnessing the potential of FL, insurers can unlock novel
avenues for product development, driving innovation and
staying at the forefront of a dynamic marketplace.

When exploring new insurance products, insurers can
collaborate with various stakeholders, such as policyholders,
data providers, and even industry partners, without the need to
centralise or share sensitive data. By accessing distributed data
through FL, insurers can gain a comprehensive understanding
of customer preferences, behaviour patterns, and emerging
trends.

For instance, insurers can use FL to analyse data from
connected devices in the 0T ecosystem that can reveal
crucial information about risks associated with smart homes,
connected cars, or wearable devices. Armed with these
insights, insurers can identify untapped market needs and gaps
in their offerings, using these to develop innovative policies that
provide coverage against emerging risks, such as cyber threats
to smart homes or personalised health insurance plans based

on wearable device data.
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Part Two:

Federated Learning in Insurance:
Exploring Risks, Regulations, and Strategies

This part first introduces the fundamentals of FL, including
its classification, existing frameworks, and applications. It
then discusses different aspects of risk management and
regulatory compliance relevant to FL implementation. As
FL involves multiple stakeholders and sensitive data, it is
important to address risks such as data privacy concerns,
model accuracy, and security vulnerabilities. Understanding
both the technical aspects of FL and the necessary risk
management and compliance measures is important in
promoting its ethical and responsible implementation.

2.1 What is Federated Learning
(FL)?

The initial concept of FL can be traced back to a paper
published by Google researchers in 20162, It recognised that
in many scenarios, data is distributed across multiple devices
(edge nodes), with privacy concerns, network limitations,
or regulatory constraints making it difficult or impractical to
aggregate the data in a central location.

14

| Federated Learning enables
collaborative machine learning while
safeguarding data privacy and security.

\

»

FL presented the novel idea of decentralising the learning

process, allowing each individual or organisation (data node) to
train a local model using its own data. Instead of sharing raw
data, the central server exchanges only the model’s updates.
Figure 7 provides a visual representation of this process,
showing the flow of the exchange of model updates between
the local devices and the central server.

22 Jakub Konecny et al., Federated Learning: Strategies for Improving Communication Efficiency, 2016.
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Figure 7 Working flow of federated learning
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Typically, the FL framework process consists of the following

eight steps:

1.

Data localisation: In an FL setup, data remains on the
local devices or servers where it is generated. Each
participant, such as a device or organisation, holds its own

dataset without transferring it to a central server.

Model initialisation: A global model is initialised on the
central server. This model serves as the starting point for
training and is typically based on prior knowledge or a pre-
existing model structure.

Local training: Each participant trains the global model
on its local dataset. This involves running multiple iterations
of model training using local data while ensuring that data
does not leave the device.

Model update collection: After local training is complete,
each participant sends its model updates to the central
server, but not the raw data. These updates represent the
learned information from the local datasets.
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5. Aggregation of updates: The central server collects the
model updates from all participants and aggregates them

to create a new global model.

6. Model distribution: The newly aggregated global model
is then sent back to the participants. Each participant
replaces its local model with the updated global model,
which incorporates learnings from all participating devices.

7. lteration: Steps 3 to 6 are repeated for several rounds,
allowing the model to improve over time until certain
convergence criteria are met, such as a predefined number

of iterations or a satisfactory level of model performance.

8. Final model evaluation: Once the training process
is complete, the final model is evaluated to assess its

performance.

2.1.1 Classification of FL

Various approaches to classifying FL are available. The following
discussion introduces two classification approaches, based on
participant entities and data distribution characteristics.



From the perspective of collaboration among participants,
FL can be categorised into two main types: cross-device
federated learning (CDFL) and cross-silo federated learning
(CSFL). CDFL is often employed in scenarios where data is
distributed across individual devices, such as smartphones,
tablets, smartwatches, and smart thermostats. CSFL involves
collaboration among organisations or institutions that maintain
their own data silos, such as hospitals and banks.

From the perspective of the distribution characteristics of
data, FL can be classified into three categories: horizontal

federated learning (HFL), vertical federated learning (VFL), and

federated transfer learning (FTL). HFL pertains to scenarios

Table 5 Comparison of CDFL and CSFL

Part Two: Federated Learning in Insurance

where multiple data partners collaboratively train a model using
the same feature space, meaning the data consists of similar
types of information or characteristics, such as standardized
tumor images from different hospitals. VFL, on the other hand,
involves scenarios where data sources have different types
of features regarding the same set of samples, such as the
health insurance records and hospital data of the same client.
FTL focuses on the transfer of knowledge or models across

different FL setups.

To provide a comprehensive overview and facilitate comparison,
these two classification approaches have been summarised in
Table 5 and Table 6.

Cross-device federated learning (CDFL) Cross-silo federated learning (CSFL)

Individual devices
(e.g. smartphones, wearables)

Client entity

Data distribution

Client scale A large number

(up to a million clients)
Bottlenecks
Use cases e Next-word prediction

e Personalised recommendations

e Health monitoring
e |oT applications

Table 6 Comparison of HFL, VFL, and FTL

Horizontal federated
Aspect

learning (HFL)

Data distribution Differ in sample space

Scenarios Cross-device/Cross-silo

Exchanged items Model parameters

High communication cost and low efficiency

Differ in feature space

Intermediate results

Organisations or companies
(e.g. hospitals, banks)

Generated locally and remains decentralised

A small number
(from two to 100 clients)

Heterogeneous data
(High variability of data types and formats)

e Disease diagnosis and prediction, medical
image analysis, drug discovery

e Credit risk assessment, fraud detection,
market prediction

e Smart city development

Vertical federated
learning (VFL)

Federated transfer learning (FTL)

Differ in both sample and feature
spaces
Cross-silo Mostly cross-silo

Intermediate results
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have seen companies across various industries recognise the

2.1.2 Applications and Emerging

Trends importance of adopting advanced technologies that preserve

data privacy while enabling collaborative data analysis. Table 7

Increasing concerns over customer privacy and data protection ) L , .
below summarises applications of FL in various areas.

Table 7 Application of FL in various areas

Areas Description
Finance FL enables collaboration among financial PayPal has developed a FL platform which allows
institutions or online platforms to train multiple businesses to train a model that can
robust fraud detection models without detect fraudulent transactions without sharing their
sharing sensitive transaction data. underlying data®.
Amazon has also developed a FL platform allowing
multiple e-commerce businesses to train a model
that can detect fraudulent orders®:.
Healthcare Healthcare institutions can use FL to The Clara platform by NVIDIA enables secure
enhance predictive models for disease collaboration among healthcare institutions for Al
outcomes, such as predicting patient model training in medical imaging, genomics and
readmissions or identifying individuals at drug discovery®.
risk of developing certain conditions. FL
can also support personalised treatment Project InnerEye by Microsoft develops Al tools for
recommendations. analysing 3D medical images®®.
The Google Health Studies app utilises FL to facilitate
respiratory illness research by collecting user health
data while ensuring privacy?’.
Smart Cities FL can be used for anomaly detection in Google Maps utilises FL to improve accuracy in

loT devices, where the global model learns predicting traffic congestion and travel times by

from the local anomalies detected by each leveraging decentralised user data, providing real-

device, improving the overall accuracy of time updates to users?.

the anomaly detection system.
In 2023, Bosch and the Austrian Institute of
Technology launched a research collaboration to
explore the application of FL to a wide range of
Bosch products, particularly in the area of Internet of
Things (loT) applications?.

Natural FL can enhance NLP tasks, such as Gboard, a keyboard app developed by Google,
Language improving the accuracy of sentiment utilises FL to refine neural network language models
Processing analysis, language translation, and chatbot for better text prediction and translation accuracy

(NLP) development, without accessing user without exporting sensitive user data to servers®. The

data directly. Furthermore, FL-based

LLM training frameworks can incorporate
additional privacy-enhancing techniques to
further strengthen the protection of data
privacy and security during the training
process.

FL environment gives users greater control over their
data and simplifies the task of incorporating privacy
by default with distributed training and aggregation
across a population of client devices.

23

24

25

26

28

30

TWIML Al Podcast. Applied AlI/ML Research at PayPal with Vidyut Naware, accessed 5 August 2025, https://twimlai.com/podcast/twimlai/applied-ai-ml-research-at-paypal-with-

vidyut-naware/.

Amazon, Amazon Fraud Detector Detect Online Fraud Faster with Machine Learning, accessed 5 August 2025, https://aws.amazon.com/fraud-detector/.

NVIDIA. 2025. NVIDIA Clara: Al-powered Solutions for Healthcare, accessed 5 August 2025, https://www.nvidia.com/en-us/clara/.

Microsoft Research, Medical Image Analysis — Project InnerEye, accessed 5 August 2025, https://www.microsoft.com/en-us/research/project/medical-image-analysis/.

Jon Morgan and Paul Eastham, Advancing health research with Google Health Studies, December 2020, accessed 5 August 2025, https://blog.google/technology/health/google-

health-studies-app/.

Eric Miraglia, Privacy that works for everyone, May 2019, accessed 5 August 2025, https://blog.google/technology/safety-security/privacy-everyone-io/.
BOSCH, Research Project Federated Learning, July 2023, accessed 5 August 2025, https://www.bosch.com/research/news/federated-learning/.
Ziteng Sun, Improving Gboard Language Models via Private Federated Analytics, Google Research Blog, April 2024, accessed 5 August 2025,

https://research.google/blog/improving-gboard-language-models-via-private-federated-analytics/.

e 028 Whitepaper on Federated Learning / 2025



2.1.3 Existing Open-source
Frameworks and Their Limitations

There are several open-source FL frameworks. Popular ones
include TensorFlow Federated (TFF), FedML, FATE (Federated
FederatedScope, FLUTE

(Federated Learning Utilities and Tools for Experimentation),

Al Technology Enabler), Flower,
and FedScale. While they all share the key features of a
FL framework, including client-side training, server-side
aggregation and communication, as well as local simulation,
they differ in other features, such as types of ML models and
libraries supported, ease of customization, privacy protection
methods, readiness for real-world use, and compatibility with
different devices and operating systems. Table 8 provides a

comparison of these frameworks®'.

As FL is a relatively new concept, most frameworks are still
under constant development. A framework that demonstrates
higher project maturity and offers comprehensive
documentation is often viewed as more reliable and better

suited for long-term adoption.

Table 8 Details of FL frameworks

Part Two: Federated Learning in Insurance

Open-source FL frameworks have democratised the
development and deployment of FL solutions, providing a
foundation for researchers and entrepreneurs to collaborate,
experiment, and build on existing FL technology. However,
like any emerging technology, open-source FL frameworks
come with their own set of challenges, which include:

¢ Limited security modules

When evaluating open-source FL frameworks, it is important
to consider their privacy and security features. The origin
and nature of these frameworks and platforms vary, with
some developed by scientific research projects and others
by commercial entities. Not all are supported by professional
teams dedicated to security technology, meaning they are
vulnerable to potential attacks. Given the importance of data
and model protection in FL and the evolving nature of attacks,
basic security modules are insufficient and there must be a
proactive and comprehensive approach to security design and
implementation.

FATE Webank Suited for commercial use, Difficult to extend
(2019) with many FL algorithms
TFF Google e Easy to use and flexible e Limited to TensorFlow/
(2019) Keras
Flower University of Oxford e Easy to use and flexible e Limited extra features
(2020)
FedScale University of Michigan e Scalable and extensible e Complex implementation
(2021)
FedML FEDML Nexus Al e Easy to use and flexible e Limited performance
(2022) optimizations
Federated Scope Alibaba e Convenient usage and e High communication costs
(2022) flexible customization
FLUTE Microsoft e High-performance FL e Difficult to extend
(2022) simulations at scale

31  Alex Braungardt, Flower & PySyft & Co: Federated Learning Frameworks in Python, Medium, 2023, accessed 5 August 2024, https://medium.com/elca-it/flower-pysyft-co-federated-

learning-frameworks-in-python-b1a8eda68b0d.
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e Scalability challenges

Open-source FL frameworks must have a scalability that
enables them to bridge the gap between scientific research
and practical application. Many open-source frameworks
neglect to optimise communication channels for large-scale
FL networks, leading to scalability challenges. FL platforms
must incorporate robust defence mechanisms and efficient
communication protocols. They should also include intelligent
mechanisms for upload and download requests, to ensure that
resource utilisation is fair and efficient.

e |ack of module support

Many open-source FL frameworks face significant challenges
due to delays in updates and lack of comprehensive module
support. These issues may complicate their integration with
existing libraries for ML, deep learning, and Large Language
Models (LLMs), such as ChatGPT and DeepSeek. This
limitation restricts the ability of FL to fully leverage the potential
of available data.

By incorporating the lessons learned from analysing existing
FL frameworks, the FL platform proposed in this white paper
will integrate privacy-enhancing technologies (PETs) such
as differential privacy and secure multi-party computation in
order to effectively address privacy and security concerns. A
confidential identity matching module (CIMM) will be developed
to secure data matching (identity matching or feature matching)
across different data sources. The platform also includes a fast-
training strategy module (FTSM) designed to enhance training
efficiency, thereby lowering scalability costs at the business
level. Finally, the platform also focuses on robust modular
architectures and provides a variety of algorithms, allowing for
easy integration and customisation by different companies. The
features of the proposed platform are explained in detail in Part
Three of this paper.

e 030 Whitepaper on Federated Learning / 2025

2.2 Risk Management and
Regulatory Compliance

FL has compelling advantages for preserving data privacy, but it
also introduces complexities that demand careful consideration
from organisations, making adherence to relevant regulations
and mitigation of associated risks imperative. This chapter
concentrates on the Hong Kong context, providing local
insurers with insights into effectively leveraging FL in their data
management practices in ways that comply with the specific
risk and regulatory landscape of Hong Kong. This section
primarily explores the risks and challenges associated with FL,

as well as solutions and mitigation strategies.

2.2.1 Risk Assessment in FL

Common risks associated with FL can be classified into
three categories: data privacy risks, model security risks and
performance risks. Data privacy risks involve threats to the
confidentiality and protection of sensitive data, while model
security risks refer to vulnerabilities in the security of FL
models. Performance risks relate to issues that can affect the
effectiveness and efficiency of the models. Since the application
of FL in the insurance industry is still in its nascent stages, it is
currently not feasible to assess all the potential risks associated
with its implementation.

2.2.1.1 Data privacy risks

During the FL process, data is aggregated across multiple
devices or servers. This introduces the risk of data leakage and
unintentional exposure of sensitive information. Collaboration
between different entities or organisations that own the data
sources elevates the risk of unauthorised access by malicious
actors within these organisations, potentially leading to misuse

of personal or confidential information.

Various solutions can be implemented to address these risks,
including secure data storage practices, robust authentication
mechanisms, and clear data usage agreements. The following
table summarises the risks identified and the associated

solutions.
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Table 9 Summary of data privacy risks of FL and solutions

Data leakage

Unauthorised access

Secure data storage: Use secure data centres, encrypt data at rest, have access
controls in place, and carry out regular data backups.

Secure communication channels: Implement encryption protocols like Transport
Layer Security (TLS) for data transmission.

Data minimisation: Minimise the amount of sensitive data shared or accessed during
the FL process by techniques such as data anonymisation and aggregation.

Robust authentication: Implement multi-factor authentication (MFA) to ensure that
only authorised individuals can access the data.

Role-based access controls (RBAC): Grant access based on job roles and
responsibilities.

Data usage agreements: Establish clear data usage agreements between
participating entities or organisations, outline the permissible use of data, restrictions
on data sharing, and protocols for handling and disposing of data after the FL
process.

Data loss prevention: Deploy data loss prevention solutions to monitor and prevent
unauthorised data transmission.

Monitoring and logging: Implement robust monitoring and logging systems to track
access to sensitive data and analyse logs for suspicious activity.

Regular access reviews: Conduct regular access reviews and audits to ensure that
access privileges are current and appropriate.

2.2.1.2 Model security risks honest clients and introduce erroneous updates to maliciously

influence the training model’s performance.

An FL framework can be attacked by adversaries, especially
if its architecture and parameters are insufficiently protected.

When aggregating parameters from clients, there is a risk

that a server may leak information during transmission, as

For clients, server trustworthiness may be an issue, as a

communication channels may be vulnerable to eavesdropping

curious or malicious server could inspect uploaded data and

by unauthorised entities.

infer private information from it. Expanded client involvement

also introduces the potential for malicious actors to manipulate

The table below summarises some common types of attack

the training process. For example, adversaries can pose as

and defence strategies in the context of FL.
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Table 10 Summary of common security attacks in FL and defence strategies

Data poisoning

Model poisoning

Backdoor attack

Evasion attack

Attribute inference
attack

Membership
inference attack

GAN
reconstruction
attack

Injecting misleading data into the training
set, e.g. flipping labels

Causing the global model to behave
undesirably by manipulating the model’s
updates

Inserting a hidden trigger into a trained
model enabling attackers to exploit it later by
activating backdoor behaviour

Altering the input samples to deceive the
model into producing incorrect outputs

Deducing sensitive characteristics of
individuals by analysing the outputs or
behaviour of a model

Deducing specific data points of the training
dataset, breaching privacy by revealing if the
model ‘memorised’ particular instances

Utilising Generative Adversarial Networks to
reconstruct sensitive or private data used to
train the model
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Anomaly detection: A proactive strategy that
utilizes analytical and statistical methods to
identify and filter out malicious occurrences that
deviate from expected patterns or activities.

Robust aggregation: Aimed at mitigating the
influence of malicious model updates, serving
as a defence against poisoning and backdoor
attacks.

Robust aggregation: Also effective here as
it helps in mitigating the effects of malicious
updates.

Pruning: By reducing the model’s size through
selective neuron removal, this can potentially
remove or mitigate the effects of backdoor
attacks.

Robust aggregation: Can help in detecting and
neutralizing backdoor attacks in model updates.

Anomaly detection: Can detect unusual inputs
that might be attempts to evade the model’s
normal operation.

Differential privacy: Introduces noise to the
data, making it hard to infer specific details about
individuals.

Multi-party computation: Ensures privacy by
distributing computation, reducing the risk of
attribute inference.

Differential privacy: Helps to mask whether
specific data points are included in the dataset.

Homomorphic encryption: Allows operations on
encrypted data, thus protecting the training data
from being inferred.

Differential privacy: By adding noise, it makes
reconstruction of individual data points more
difficult.

Homomorphic encryption: Operations on data
can be performed without revealing the data
itself, preventing reconstruction.
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Model extraction
attack

Extracting the parameters, architecture, or
intellectual property of a trained machine

learning model to replicate or gain

unauthorised access to its functionality

2.2.1.3 Performance challenges

challenges, associated issues, and potential strategies for

FL faces several performance challenges that can affect

model accuracy and efficiency.

Homomorphic encryption: Protects model
internals by allowing computations without
exposing the model’s parameters or structure.

Multi-party computation: Distributes the model
across multiple parties, making it harder to
extract the complete model without cooperation
from all parties involved.

The following table summarises the key performance

improvement.

Table 11 Summary of performance challenges and strategies

Performance Challenges “ Strategies

Data heterogeneity

Communication and
computation efficiency

Federated optimisation
challenges

Variability in data quality and

representativeness may bias
models.

Disproportionate data
contributions lead to inaccurate
predictions

Increased clients and data
volume strain bandwidth and
increase latency.

High communication costs
affect overall performance.

Traditional algorithms may
not be suitable for distributed
settings.

Data preprocessing and normalisation:
Standardise datasets and address quality issues,
such as by engineering numeric features to

capture nonlinear relationships, grouping infrequent
categories for high-cardinality variables, creating
data dictionaries to document types, units, and
scaling (e.g. kilometres vs. miles), and using natural
language processing (NLP) to extract insights from
unstructured data and convert it into structured
formats.

Assessment and contribution feedback: Adjust
learning rates based on data quality.

Model optimisation: Use techniques such as
stochastic gradient descent (SGD) and adaptive
algorithms.

Communication optimisation: Apply model
compression, quantisation, and differential updates.

Use specialised techniques: Implement federated
averaging and secure aggregation to handle non-1ID
data.
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2.2.2 Compliance and Regulations

To effectively leverage FL technology while mitigating the
above risks, insurers are encouraged to proactively engage
with a robust set of regulatory expectations. These include
compliance with requirements related to: (i) data protection
and privacy, (i) cybersecurity, (i) governance and control,
(iv) outsourcing risk, and (v) fair treatment of customers.
Each of these areas is crucial for the responsible deployment
of FL technologies.

In addition to general regulatory requirements, global
standards are increasingly referenced as best practice within
the insurance sector for managing the risks associated
with advanced technologies. The International Association
of Insurance Supervisors (IAIS), representing insurance
regulators globally, highlights the ongoing relevance of its
Insurance Core Principles (ICPs) in managing Al-related
risks. Published in July 2025%, its application paper on
Al supervision reiterates that insurers remain responsible
for understanding and managing these systems and
their outcomes. The paper emphasizes a risk-based and
proportional approach, focusing on four key areas of
governance and risk management that require particular
attention: governance and accountability, robustness,
safety and security, transparency and explainability, and

fairness, ethics, and redress.

By exercising due diligence and adopting best practices,
insurers can effectively leverage FL to safeguard personal
data while ensuring alignment with applicable laws and
regulations.

The
considerations and is intended as a general guide to potential

following overview highlights key compliance

regulatory implications, rather than a comprehensive legal
analysis.

2.2.2.1 Data protection and privacy

FL is a ML and BDA approach that may present privacy-
related risks and dangers, including:

e Ubiquitous data collection that may infringe individual
privacy

e Probabilistic models that can lead to inadequate reasoning
and ambiguity as to whether data is authentic or fake

e The potential for algorithmic discrimination and bias

e Lack of transparency around how data is being used and
applied

e Unpredictable or unintended uses of data over time

e Risks of poor data quality and the production of false or
misleading information

e Concemns around plagiarism, profiing, and the re-

identification of individuals

e Potential for unfair applications and the exploitation of data
for wrongdoing

Organisations implementing FL should carefully assess the
nature of the data involved and ensure compliance with
relevant data protection laws and regulations, including
obtaining appropriate consent for its use, anonymising or
pseudonymising data when necessary, and implementing
security measures to protect the privacy of individuals
contributing to the FL process. The following discussion
provides an overview of the legal and regulatory landscape
surrounding  data that

protection and governance

organisations should pay attention to.

¢ The Six Data Protection Principles

The Personal Data (Privacy) Ordinance (Cap. 486) (PDPO)
is a privacy law in Hong Kong that governs the collection,
handling, and use of personal data by both private and
public sectors. It sets out six Data Protection Principles
(DPPs) that organisations must comply with when handling
personal data. The DPPs cover the entire life cycle of
personal data in FL, and are summarised in Table 12:

32 IAIS, Application Paper on the supervision of artificial intelligence, July 2025.
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Table 12 The Six Data Protection Principles

“

Personal data must be collected in a lawful and fair way, for a purpose
directly related to a function/activity of the data user. Where personal data
is collected from the data subjects directly, all practicable steps must be
taken to notify the data subjects of, amongst others, the purpose of data
collection and the classes of persons to whom the data may be transferred.
Data collected should be necessary and not excessive.

Practicable steps must be taken to ensure that personal data collected is
accurate, and that it is not kept for a period longer than is necessary to
fulfil the purpose for which it is used.

Personal data must be used for the purpose for which the data is collected
or for a directly related purpose, unless voluntary and express consent is

obtained from the data subject.

A data user must take practical steps to safeguard personal data collected
from unauthorised or accidental access, processing, erasure, loss, or use.

A data user must make known to the public its personal data policies and

practices, the types of personal data it holds, and how the data is being

1 Collection Purpose and

Means
2 Accuracy and Retention
8 Use
4 Security
5 Openness

used.

6 Data Access and Correction

A data subject must be given access to his/her personal data and be able

to make corrections if the data is inaccurate.

DPP 4(1) of Schedule 1 of the PDPO requires businesses to
take all practicable steps to ensure that any personal data
held by them is protected against unauthorised or accidental
access, processing, erasure, loss, or use.

While DPP 4 creates an explicit legal requirement regarding
the security of personal data, other provisions of the PDPO
also have a bearing on data security. Regarding the principle
of data minimisation, DPP 1(1) provides that only a necessary
and not an excessive amount of personal data should be
collected in relation to the purpose for which the data is
collected. It is generally accepted that the less amount of data
that is collected or held by businesses in the first place, the
less exposure to security risks there is likely to be in the future.

On data retention, DPP 2(2) requires a data user to take all
practicable steps to ensure that personal data is not kept
longer than is necessary for the fulfilment of the purpose
(including any directly related purpose) for which the data is
or is to be used.

Section 26 of the PDPO provides that a data user is required
to take all practicable steps to delete personal data when it is
no longer needed for the purpose it was used unless erasure
is prohibited by law, or it is in the public interest to retain the
data. Implementing data retention policies that ensure the timely
deletion of personal data that is no longer needed can help
reduce the risk of data breaches.

To ensure compliance with section 26 and DPP 2(2), data
users are advised to establish a comprehensive personal data
retention policy. This policy should outline the specific retention
periods for the personal data they hold. Additionally, data users
should develop a personal data erasure policy that provides clear
guidelines on management practices for identifying and erasing
different types of records, whether in digital or physical format.

Data  minimisation,  anonymisation,  pseudonymisation,
deidentification, and timely erasure are some of the possible
measures to enhance data protection. Both in theory and in
practice, any data on any device is vulnerable to unauthorised or

accidental access, processing, erasure, loss, or use.
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DPP 2(3) and DPP 4(2) require businesses to adopt contractual ¢ Model Personal Data Protection Framework for Al

or other means to ensure that any data processor engaged b
y P 9eg y In view of the rapid development and wide range of applications of

th 9. loud i id | l ith simil
em (e.g. a cloud service provider) also complies with similar Al (including FL), the PCPD has issued guidelines designed to help

requirements in respect of data security and data retention.
9 P y Hong Kong enterprises reap the benefits of Al technology while

maintaining personal data privacy protection. These guidelines

When deciding what “reasonably practicable steps” should
g y P P include “Artificial Intelligence: Model Personal Data Protection

be taken t tect | data, the PCPD Id t
© Taken o profect personal aata, the would expee Framework” (Model Framework)®® and “Guidance on the Ethical

businesses to have due regard to the nature of the personal
us! Ve due regar ur per Development and Use of Artificial Inteligence” (Guidance)®,
published in June 2024 and August 2021 respectively. While the

Guidance is primarily intended for organisations that develop and

data they hold, the possible impact of a data breach, as well
as the technical and organisational measures taken to ensure

data security.
y use Al systems, the Model Framework targets organisations which

procure, implement and use any type of Al systems (including

If a data security breach is suspected, it is strongl ) . )
y P oy generative Al). Figure 8 below depicts the model personal data

recommended that legal advice is sought as soon as possible.
9 9 P protection framework recommended in the Model Framework.

Prompt action in consultation with legal experts can help

businesses navigate the complex regulatory environment,

mitigate potential damages, and ensure compliance with

relevant data protection laws and notification requirements.

Figure 8 Model Personal Data Protection Framework

Provide feedback for adjustment ]
» 0g0
oW

Establish Conduct Foster
Al Strategy and Risk Assessment and Communication and
Governance Human Oversight Engagement with

Stakeholders

) I ) [

Re-assess risks when there are Fine-tune Al systems to address
significant changes stakeholders’ concerns

33 PCPD, Atrtificial Intelligence: Model Personal Data Protection Framework, June 2024.
34 PCPD, Guidance on the Ethical Development and Use of Artificial Intelligence, August 2021.
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The Model Framework, which is based on general business  that the governance of Al systems adheres to the three Data
processes, provides a set of recommendations and best  Stewardship Values and the Seven Ethical Principles for Al (see
practices for organisations regarding Al governance for the  Table 13), as advocated in the Guidance of 2021.

protection of personal data privacy. It is structured to ensure

Table 13 Data Stewardship Values and Ethical Principles for Al

3 Data Stewardship Values 7 Ethical Principles for Al

1. Being Respectful 1. Accountability: Organisations should be responsible for

what they do and be able to provide sound justifications
To respect the dignity, autonomy, rights, interests and for their actions. Al-related risks should be assessed and
reasonable expectations of individuals in processing their addressed with engagement from senior management
data. In this regard, every individual should be treated and interdisciplinary collaboration.

ethically, rather than as an object or a piece of data.

2. Human Oversight: Al system users should be able
to take informed and autonomous actions regarding
Al systems’ recommendations and decisions. When
employing Al systems, the level of human involvement
should be proportionate to the associated risks and
impacts. Human intervention should always be available
if the use of Al is deemed high-risk.

3. Transparency and Interpretability®>: Organisations
should clearly and prominently disclose their use of Al
and the relevant data privacy practices while striving to
improve the interpretability of automated and Al-assisted
decisions.

4. Data Privacy: Effective data governance should be put in
place to protect individuals’ privacy in the development
and use of Al.

2. Being Beneficial 5. Beneficial Al: Al should provide benefits to human
beings, businesses and the wider community. Provision

Emphasises the need to provide benefits to stakeholders, of benefits encompasses prevention of harm.

including individuals affected by the use of Al and the

wider community, where possible. Meanwhile, any 6. Reliability, Robustness and Security: Organisations

potential harm to stakeholders should be prevented or should ensure that Al systems operate reliably and as

minimised. intended over their expected lifetime. Al systems should

be resilient against errors during operations, and be

protected against attacks such as hacking and data

poisoning. Fallback plans should be in place to cope
with the failure of Al systems.

35 Interpretability refers to the ability to determine the cause and effect process within an Al system. In other words, it is the extent to which a person can predict what will happen when
there is a change in the input to the Al system.
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Table 13 Data stewardship values and ethical principles for Al

3 Data Stewardship Values 7 Ethical Principles for Al

3. Being Fair

In respect of processes, ‘fair’ means that decisions are
made reasonably and without unjust bias or unlawful
discrimination. There should be highly accessible and

7. Fairness: Individuals are entitled to be treated in a
reasonably equal manner, without unjust bias or unlawful
discrimination. There should be sound reasons for any
differential treatments between different individuals or
different groups of people.

effective avenues for individuals to seek redress for
unfair treatment. In respect of results, ‘fair’ means
individuals in comparable circumstances should be
treated similarly. There should be sound reasons for any
differential treatments between different individuals or
different groups of people.

When purchasing,
organisations should take into consideration the recommended

measures in the following four areas (see Table 14) to formulate

implementing or

using Al solutions,

Principles for Al are implemented.

Table 14 Recommended measures regarding Al data protection

Steps/Areas Key Recommended Measures

1

Establish Al Strategy
and Governance

Conduct Risk
Assessment and Human
Oversight

Customise Al Models
and Implement and
Manage Al Systems

Communicate
and Engage with
Stakeholders

e 038 Whitepaper on Federated Learning / 2025

Develop an internal Al strategy

Consider governance issues when procuring Al solutions

Establish an internal governance structure (e.g. an Al governance committee)
Provide Al-related training to employees

Conduct comprehensive risk assessments
Formulate a risk management system

Adopt a “risk-based” management approach
Balance potentially conflicting ethical principles

Ensure data preparation and management processes align with privacy laws and
guidelines

Test and validate Al models throughout customisation and implementation
Ensure system security and data security

Carry out continuous monitoring and review of the Al system

Establish an Al Incident Response Plan

Establish user feedback channels to ensure effective and regular communication and
engagement with stakeholders (e.g. internal staff, Al suppliers, individual customers
and regulators)

Ensure proper handling of data access and correction requests

Provide explanations for Al-made decisions and output

Disclose the use of Al systems

appropriate policies, practices and procedures. This will help
ensure that the Data Stewardship Values and the Ethical



By adhering to these principles and measures, organisations
can ensure that their Al systems are deployed in a responsible,
transparent, and accountable manner, and are in compliance
with PDPO requirements.

e Proper handling of customers’ personal data
for the insurance industry

The insurance industry handles a substantial amount of
personal and sensitive data, including contact details, financial
information, and medical records. Recognising the unique
challenges faced by the insurance industry, the PCPD has
issued a specific guidance note with practical advice and case
studies to assist insurance institutions in complying with the
relevant requirements of the PDPO when handling customers’
personal data®®.

The guidance note covers a wide range of personal privacy
issues. It gives practical tips on the collection of customers’
personal data (including medical data and Hong Kong Identity
Card numbers), the engagement of private investigators, the
collection and use of personal data in direct marketing, the
retention of customers’ personal data, the use of data for
internal training, the access to and handling of personal data

by staff and agents, and the handling of data access requests.

Meanwhile, the PDPO (as amended in 2012)
businesses/individuals intending to use or provide a customer’s

requires

personal data to others for direct marketing purposes to clearly
inform the customer of such an intention and to obtain their
consent in prescribed ways. Failure to do so may attract criminal
liability. Organisations operating within the insurance industry
must therefore maintain awareness of and strict adherence
to the legal requirements surrounding the use of customers’

personal data for direct marketing®.

Furthermore, from a corporate risk management perspective,
the Insurance Authority’s Guideline on Enterprise Risk
Management (GL21)%* contains specific requirements on data
governance related to insurance activities, covering:

e Data relevance and reliability: ensuring the use of
sufficient, reliable, and relevant data in critical insurance
processes such as underwriting, pricing, reserving, and

reinsurance.

e Operational risk mitigation: implementing safeguards
against operational risk events, such as data theft,
and

regulatory breaches, sensitive data disclosure,

business disruption caused by data corruption.

e Data aggregation accuracy: ensuring the accuracy and
reliability of data aggregation processes, which involve
consolidating data from various sources for analysis and

decision-making.

e Monitoring and reporting: establishing an approach
and frequency for monitoring and reporting data quality
deficiencies, allowing for timely identification and resolution
of issues.

e Regular review: conducting regular reviews of data quality
controls, systems, and policies to ensure their effectiveness

and alignment with industry standards and best practices.

Adhering to these best practices and regulatory requirements
will enable insurance institutions to enhance their compliance
efforts and safeguard the privacy of customers’ personal data
throughout their operations.

e Cross-boundary data transfer

Given the increased amount of data collaboration between
Chinese Mainland and Hong Kong, Hong Kong-based
companies that implement FL across regions should closely
consider the various cross-boundary data transfer laws,
regulations, measures, and guidelines in Chinese Mainland and

Hong Kong.

For transfers of personal data to places outside Hong Kong
(including northbound data transfers from Hong Kong
to Chinese Mainland), the DPPs under the PDPO apply,
regardless of the destination of the data transfer. The PCPD has
recommended the use of Recommended Model Contractual
Clauses (RMCs) to facilitate compliance with the PDPQO’s
DPPs for cross- boundary data transfers®®. RMCs set out the
general obligations of the contracting parties in respect of the
protection of personal data privacy, and cater for two different
scenarios in cross-boundary transfers, namely, (i) from a data
user to another data user; and (i) from a data user to a data

processor. They are applicable to:

36 PCPD, Guidance on the Proper Handling of Customers’ Personal Data for the Insurance Industry, November 2012.

37 PCPD, Guidance on Direct Marketing, April 2023.
38 IA, Guideline on the Use of Internet for Insurance Activities (GL 21), July 2019.

39 PCPD, Guidance on Recommended Model Contractual Clauses for Cross-border Transfer of Personal Data, May 2022.
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a. Thetransfer of personal data from an HKSAR entity to another
entity outside the HKSAR, including Chinese Mainland; or

b. The transfers between two entities outside the HKSAR

when the transfer is controlled by an HKSAR data user.

Since the signing of the “Memorandum of Understanding on
Facilitating Cross-boundary Data Flow within the Guangdong-
Hong Kong-Macao Greater Bay Area”™® on 29 June 2023
between the Cyberspace Administration of China and the
HKSAR Government’s Innovation, Technology and Industry
Bureau, there has been a key development regarding data

transfer rules within the Greater Bay Area (GBA):

On 13 December 2023, the “Implementation Guidelines on
the Standard Contract for Cross-boundary Flow of Personal
Information Within the Guangdong-Hong Kong-Macao Greater
Bay Area (Mainland, Hong Kong)’ (28R AERE (At - &
) EAEREREREEESREMHEIES]) came into effect*.
Based on the relevant data protection laws of Chinese Mainland
and Hong Kong, these guidelines aim to promote the safe and
orderly cross-boundary flow of personal information within
the GBA. With effect from 1 November 2024, the facilitation
measures of the GBA Standard Contract, piloted in the banking,
credit referencing and healthcare sectors, have been extended
to cover all sectors in Hong Kong.

¢ Use of sensitive personal information

Some data used by the insurance sector is considered sensitive
in nature, requiring more cautious handling and adherence to
specific regulations in Hong Kong or other jurisdictions.

Under the laws of the mainland, sensitive personal information
is subject to strict processing rules, and separate or written
consent may be required for the processing of such data. PIPL

defines sensitive personal information as “personal information
that, if leaked or illegally used, may easily lead to infringement
of a natural person’s personal dignity or endanger the personal
safety or the property of a person”, including information

relating to:

e Biometrics

e Religious beliefs

e Specific identities

e Healthcare

e Financial accounts

e A person’s whereabouts

e Any personal information of minors under the age of 14

Unlike in the European Union (EU) or Chinese Mainland, Hong
Kong’s PDPO does not have a similarly defined classification
of “sensitive personal data”. Hong Kong companies must
therefore remain vigilant and be aware of the differences
between Hong Kong’s regulations and the more stringent
requirements of places like Chinese Mainland and the EU.
Given the sensitive nature of the alternative data used in
insurance operations, such as medical and financial data, it is
recommended that insurance companies in Hong Kong should
adhere to very rigorous data protection measures and ethical

practices when handling such data.

While the PDPO in Hong Kong does not define “sensitive
personal data”, the PCPD has provided specific guidance on
the collection, use and retention of personal identifiers and
consumer credit data through two codes of practice:

40 Digital Policy Office (DPO) (formerly known as the Office of the Government Chief Information Officer, OGCIO), Facilitating Cross-boundary Data Flow within the Greater Bay Area,

accessed 5 August 2025.

41 BEREMBEEMAE & BEEFEIMAIFHERTER, BBRAOERN - ER)EAGEBERRDRLESREMES], 2023F12813H.
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1. Code of Practice on the Identity Card Number and
Other Personal Identifiers (Revised in April 2016)*

Hong Kong lIdentity (HKID) Card numbers are commonly
collected and used by organisations such as insurers to identify
individuals and manage records related to them. However,
the indiscriminate collection and improper handling of HKID
Card numbers and copies may unduly infringe the privacy of
the individuals and create opportunities for fraud. The Code
provides guidance on the appropriate handling of personal
identifiers in general, and HKID Card numbers and copies in
particular. These include:

e OQOrganisations in Hong Kong are required to carefully
consider less privacy-intrusive alternatives and give the
individual the option of choosing such alternatives before
deciding to record or collect an individual's HKID Card
number.

e \Where an organisation has collected an HKID Card number
for a permitted purpose under the Code, they should
generally only use that number for that purpose or other
further purposes allowed by the Code, and not for any
other unauthorised purposes.

e An organisation should not keep records of HKID Card
numbers for longer than is necessary to fulfil the purpose
for which they were collected.

Insurance providers in Hong Kong must strictly adhere to
the requirements of the Code if using customers’ HKID Card
numbers for identity matching or verification purposes, such as
in ML models including FL.

2. Code of Practice on Consumer Credit Data (Revised
in January 2013)*®

This Code is designed to provide practical guidance to data
users in Hong Kong for the handling of consumer credit
data. It deals with the collection, accuracy, use, security and
access and correction issues as they relate to personal data
of individuals who are, or have been, applicants for consumer
credit. The Code covers, on the one hand, credit reference
agencies (CRAs), and on the other hand, credit providers in

their dealing with CRAs and debt collection agencies.

As the Proof-of-Concept (PoC) of this white paper research
involves the use of consumer credit data held by one of the
CRAs, the handling of this data must adhere to the requirements
of the Code. These requirements include:

e Credit providers, such as banks and money lenders, are
prohibited from accessing consumer credit data held by
CRAs for direct marketing purposes. This includes offering
or advertising goods, facilities, and services to individuals.
However, it does not prohibit a credit provider from
accessing the credit data of its existing customers in the

course of reviewing or renewing their credit facilities.

e A CRA may not transfer consumer credit data held by it to
a place outside Hong Kong unless the purpose of use of
the transferred data is the same as or directly related to the

original purpose of its collection.

42 PCPD, Code of Practice on the Identity Card Number and Other Personal Identifiers, April 2016 (First Revision). Note: An updated explanatory note titled “Code of Practice on the
Identity Card Number and Other Personal Identifiers: Compliance Guide for Data Users” was issued (Revised in August 2024).
43 PCPD, Understanding the Code of Practice on Consumer Credit Data Frequently Asked Questions on the Sharing of Mortgage Data for Credit Assessment Purpose, October 2015.
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e Best practice in the use of genetic test results

Many countries have introduced limitations (via self-regulation
or legislation) in recent years on requests for and the use of
genetic test results by insurers for the purpose of assessing

insurance applications.

In Hong Kong, the Hong Kong Federation of Insurers (HKFI)
established the Code of Practice on Genetic Testing in 2000,
revised in 2020. It sets out key principles and best practices
for the use of genetic test results in the insurance sector,
which include but are not limited to underwriting and claims
assessment*. According to the Code:

e Insurers will not require, compel, or pressure potential
applicants to undertake genetic testing for underwriting

purposes.

e [nany event, insurers will not ask for the results of any types
of genetic tests (Diagnostic or Predictive) for the purpose
of underwriting if the genetic testing was conducted in the
context of scientific research.

e Insurers will not ask for or use the results of any genetic
tests of a relative or family member of a proposed or
existing insured person for the purpose of underwriting.

e Insurers may ask for certain predictive genetic test results
only when the applicant applies for Life Insurance or Critical
liness/Dread Disease policies over defined protection
limits, e.g. HK$5M and HK$1M respectively. For medical
indemnity insurance, no predictive genetic test results will
be requested, regardless of the sum insured.

Although the Code is not legally binding, insurers in Hong Kong
are advised to adhere to it in order to promote responsible and
ethical practices around the use of genomic data.

Insurers should also be aware that genetic privacy is protected
to varying degrees across many jurisdictions. In the US, the
Genetic Information Nondiscrimination Act of 2008 (GINA)* is a
federal law that prohibits the use of genetic information in health
insurance underwriting and employment decisions. However,
GINA does not apply to life insurance, disability insurance,
or long-term care insurance, for which the use of genetic
information is still largely unregulated at the federal level. In the
UK, the Association of British Insurers has also developed a
voluntary code of practice*® that limits the use of genetic test
results in insurance underwriting. In the EU, Article 9% of the
GDPR considers genetic data as a special category of personal
data, and its use is subject to strict regulations and safeguards.
Recital 52 of the GDPR*® provides exceptions to the prohibition
on processing special categories of personal data, such as for
health purposes, public interest, or the establishment, exercise
or defence of legal claims.

44 The Hong Kong Federation of Insurers, Best Practice on Use of Genetic Test Results, May 2020.

45 U.S. Department of Health and Human Services, The Genetic Information Nondiscrimination Act of 2008, 2009.

46 UK Government and the Association of British Insurers, Code on Genetic Testing and Insurance, October 2018.

47  EU, General Data Protection Regulation, Processing of Special Categories of Personal Data, 2016.

48 EU, General Data Protection Regulation, Recital 52 Exceptions to the Prohibition on Processing Special Categories of Personal Data, 2016.
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2.2.2.2 Cybersecurity

Like any technology that involves data and communication, FL
may pose cyber hazards. To prevent and mitigate such risks
in the insurance sector, the IA has issued the GL20 Guideline
on Cybersecurity, which outlines the minimum cybersecurity
standards that authorized insurers in Hong Kong must adhere
to in order to safeguard their business data and the personal

data of their policyholders.

According to GL20, insurers are required to develop a
customised cybersecurity strategy and framework that aligns
with the nature, scale, and complexity of their business.
The board of directors should hold overall responsibility
for cybersecurity controls, and establish a designated
management team to oversee and implement cybersecurity
measures. A self-assessment tool and systematic monitoring
process should also be implemented for overall cyber risk
management. Any cyber incident detected must be reported

to the IA within 72 hours*.

The GL21
supplements GL20 by highlighting the

Guideline on Enterprise Risk Management
importance  of
incorporating a risk management policy on cyber risk, including

controls relating to:

e protecting policyholder data and digital/electronic data

e dentifying, preventing, detecting, and mitigating

cybersecurity threats

e monitoring and reporting cyber risks

e regular testing of mitigation measures

e communicating cybersecurity policies and procedures to

staff, and regularly reviewing and assessing the policies and
procedures and monitoring their implementation

2.2.2.3 Outsourcing risk

Developing a FL model in collaboration with external entities
or with the assistance of third-party service providers typically
exposes organisations to greater operational risks. While Hong
Kong does not have any specific statutes that govern and
regulate outsourcing arrangements, some relevant industry-
specific regulations and guidelines apply.

A major concern when outsourcing IT and cloud services is
data privacy. The PCPD advises organisations adopting cloud
computing services to fully assess the benefits and risks,
recognise the shared responsibility between the organisations
as data users and cloud service providers to safeguard personal
data privacy, especially data security, in a cloud environment,
and ensure they are compliant with the PDPO.

In the insurance sector, the IA has issued the Guideline on
Qutsourcing (GL14)%" to regulate the outsourcing activities of
authorized insurers. In accordance with GL14, an authorized
insurer should conduct due diligence in selecting its service
provider and ensure its outsourcing arrangements comply
with relevant laws and statutory requirements on customer
information confidentiality (e.g. the PDPO). GL14 also requires
insurers to conduct a comprehensive risk assessment of their
outsourcing arrangements, and to put in place a contingency
plan to ensure that their business will not be disrupted as a
result of undesired contingencies (e.g. system failure) of the
service provider. The Guideline also emphasises that the board
of directors and management of authorized institutions should

retain ultimate accountability for any outsourced activity.

2.2.2.4 Fair treatment of customers

Treating customers fairly is the focus of ICP 19% issued by the
IAIS. This principle lies at the very core of insurance regulation,
as set out in the Insurance Ordinance and reinforced by
various guidelines, including the Guideline on the Corporate

Governance of Authorized Insurers (GL10)%, the Guideline on

49 |A, Guideline on cybersecurity (GL20), 2019.
50 PCPD, Guidance on Cloud Computing (Second Revision), January 2025.
51 IA, Guideline on outsourcing (GL14), 2017.

52 IAIS, ICP 19 Conduct of Business, accessed 7 August 2025, https://www.iais.org/icp-online-tool/13530-icp-19-conduct-of-business/.

53 IA, Guideline on the Corporate Governance of Authorized Insurers (GL10), 2017.
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Underwriting Class C Business (GL15)** , and the Guideline on
Underwriting Long Term Insurance Business (other than Class
C Business) (GL16)*°.

The use of FL in the insurance industry may introduce

considerations related to customer fairness, particularly
concerning bias in decision-making and transparency. To
manage these risks and adhere to regulatory expectations,

insurers should implement the following:

e Provide adequate and clear information: Ensure
customers receive accurate, timely, and comprehensible
information throughout the insurance lifecycle. This includes
1) presenting product information in plain language and
bilingual formats, avoiding technical or industry jargon,
2) clearly disclosing key product features and risks, 3)
explaining clearly how customer data is used, and how
decisions are made, particularly when FL is involved in
product recommendations, underwriting or claims. These
measures help customers make informed decisions and
manage their expectations effectively.

assessments with human

e Conduct suitability

oversight: Before recommending products, insurers
must assess their alignment with the customer’s needs,
financial status, and risk appetite. While FL can assist
in these assessments, human oversight is essential to
validate model outputs and ensure recommendations serve

customers’ interests.

e Give proper advice: Any advice provided must prioritise
the customer’s best interest, supported by clear reasoning
and documentation. Employees and intermediaries should
be equipped with the necessary training to understand
both the benefits and limitations of FL, and be prepared to
act with skill, care, and diligence.

Additionally, ongoing monitoring and auditing of the FI models
are vital, along with maintaining human oversight throughout
the model lifecycle to ensure trustworthiness. Insurers should
work closely with their technology partners to establish robust
model governance and auditability processes.

2.2.3 Recommendations and
Conclusion

This chapter has discussed the major legal issues related to
FL, including risks, compliance issues, and ethical principles
associated with this technology. Insurers are advised to
consider the following recommendations before adopting FL.

Firstly, insurers must ensure their technical readiness for FL
adoption by conducting a careful examination of the associated
risks and establishing robust risk management strategies. This
involves thoroughly assessing technological infrastructure,
compatibility with existing systems, and potential vulnerabilities.
By addressing these considerations upfront, insurers can
proactively mitigate risks and ensure a smooth integration of
FL into their operations.

Secondly, as the insurance business involves handling vast
amounts of sensitive customer data, data protection and
security should be a priority in the early stages of project
planning. Insurers must diligently comply with relevant data
privacy laws and regulations, and implement comprehensive
security measures to safeguard sensitive data. They should
also closely follow the evolving landscape of data privacy laws
in other jurisdictions.

Lastly, given that the application of FL in the insurance sector is
still in its early stages, it is recommended that insurers should
start with small-scale pilot projects to assess their feasibility and
scalability. By initiating pilot projects, insurers can gain valuable
insights, learn from initial experiences, and make necessary
adjustments before extending FL implementation across
broader insurance processes. This iterative approach will also
enable insurers to identify potential challenges, fine-tune their
strategies, and optimise the benefits of FL technology for their
specific business needs.

54 |A, Guideline on Underwriting Class C Business (GL15), 2017.

55 IA, Guideline on Underwriting Long Term Insurance Business (other than Class C Business) (GL16), 2023.
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As FL applications become more specialised, it is anticipated
that domain-specific legal issues will emerge that will require
appropriate resolutions. Therefore, engagement with legal
professionals at the earliest stages of any FL-related project
is strongly recommended, to ensure that all legal implications
are comprehensively considered and incorporated into the
project’s design. Moreover, given the evolving legal landscape
surrounding FL, insurers must stay proactively informed about

Part Two: Federated Learning in Insurance

emerging legal requirements and best practices to ensure their
ongoing compliance and mitigate potential risks.

The successful deployment of FL within the insurance industry
requires a comprehensive assessment framework that
addresses the key considerations and challenges associated
with this collaborative ML approach, summarised in Figure 9.
This framework should act as a guide for insurers on their journey
to leverage FL for various insurance-related applications.

Figure 9 Assessment framework for federated learning in the insurance sector

K_ A
Q Data Protection and Privacy

Insurers adopting FL must comply with the following data
privacy regulations:

The Personal Data (Privacy) Ordinance (Cap. 486)
(PDPO), particularly the Six Data Protection Principles
(DPPs)

PCPD Al Model Framework (2024) and Guidance
(2021)

PCPD requirements on proper handling of customers’
personal data for the insurance industry
Cross-boundary data transfer, for example, the use of
Recommended Model Contractual Clauses (RMCs)

@ Regulatory Considerations

Insurers are advised to take into consideration the
following regulatory guidance:

Proper handling of cybersecurity risks (GL20) and
outsourcing risks (GL14)

Ensuring fair treatment of customers by providing
adequate and clear information, conducting
suitability assessment, giving proper advice, and
maintaining human oversight (GL15 and GL16)
D ¢ Relevant Al guidelines, such as the EU Al Act

9.

®)

090
ﬂmﬂ] Ethical Principles

Insurers using FL should adhere to these fundamental

C

ethical principles:

Accountability

Human Oversight

Transparency and Interpretability
Data Privacy

Fairness

Being Beneficial

Robust, Safety, and Security

w Recommendations

It is advised that before adopting FL, insurers should
consider the following recommendations:

Ensure technical readiness for FL adoption and
establish robust risk management strategies
Implement comprehensive security measures to
safeguard sensitive data

Start with small-scale pilot projects to assess
feasibility and scalability
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Part Three: Federated Learning Infrastructure for the Insurance Industry

Federated Learning Infrastructure

for the Insurance Industry

This part describes the key infrastructure required to create a
collaborative Federated Learning (FL) data analytics platform
for the insurance sector. This FL platform is applicable to
insurance business scenarios such as product development,
risk assessment, claims management, renewal prediction, and
fraud detection, areas where collaborative data analysis and
modelling can drive innovations while at the same time preserving
data privacy. To assist insurers in its implementation, this part
also explains how the infrastructure works, and provides an
overview of some key Machine Learning (ML) models relevant
to the insurance sector. In addition, it discusses mainstream
privacy-enhancing techniques, and highlights key advances in
areas such as training efficiency and secure identity matching

among entities.

14

Federated Learning redefines

collaboration in insurance, enabling
organisations to jointly unlock insights
from distributed data, driving innovation
without compromising privacy. \

»

Figure 10 The FL data analysis process
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3.1 The Federated Learning
Collaborative Data Analytics
Platform

An automated FL platform collects and structures data from
different parties or channels and applies ML models to predict
outcomes. It streamlines data collection and analysis by
leveraging digital technologies like optical character recognition
(OCR) and natural language processing (NLP) to extract
information directly from databases or scanned documents
and analyse it. For the insurance sector, an FL data analytics
platform created through cross-organisation collaboration has
the potential to enhance a wide variety of insurance tasks.

The blue arrows in Figure 10 show the key steps in the FL
data analysis process. The green arrow indicates how new
insurance applicant data can be fed directly into the trained
model to generate model decisions in areas such as marketing
strategies, claims management, and renewal prediction. This

section goes on to describe each step in detail.

Automated platform
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3.1.1 Step 1: Decentralised Data
Collection

Step 1 is primarily preparation work prior to the actual FL training,
focused on organising and standardising the decentralised data
collected. In an FL framework, decentralised data is collected
from various sources but remains distributed across different
organisations, allowing each to retain control over its own data.
To optimise this process and ensure the effective integration of
a diverse range of data, three key methods can be leveraged:
Open APIs, OCR, and NLP.

e Open APIs provide a well-defined interface for the secure
and standardised exchange of data between the platform
and external systems, promoting interoperability and
facilitating the integration of diverse data sources. The
banking and insurance industries in Hong Kong have
already adopted Open APIs, exemplified by the Open
API Framework for the Insurance Sector in Hong Kong®®
and the Open API Framework for the Hong Kong Banking
Sector®’.

e OCR is predominantly used for capturing unstructured
data, converting various document formats into machine-
readable data. It enables the efficient extraction of key
information from self-provided documents by insurance

applicants, such as names and dates of birth from
identification documents, and healthcare information
(e.g. handwritten notes) from medical records, including
diagnoses and treatments. OCR has its limitations,
particularly when dealing with documents that contain
a mix of languages such as English, Traditional Chinese,
and Simplified Chinese, as it can struggle to accurately
recognise and process different character sets within a

single document.

NLP/ML: Unstructured data captured by OCR or API
channels requires further processing and analysis using
techniques like NLP or ML algorithms. These techniques
categorise data variables based on their content or
characteristics, and uncover patterns, relationships, and
sentiments within the structured text. Table 15 below
summarises how ML and NLP help to structure data. The
approach used to convert unstructured data is determined
by the specific scenario and the desired outcomes. FL
trains NLP models on decentralised data, ensuring data
privacy by sharing only model updates, not raw data.
This approach enhances model accuracy and fosters
collaborative insights, and can help achieve improved
decision-making and service in industries like insurance.

Table 15 Typical ML or NLP applications for structuring data from various sources

Methods Machine Learning (ML)/Natural Language Processing (NLP) applications

Text summarisation Condenses large volumes of text data, such as policyholder applications, medical

records, and other documents

Sentiment analysis Analyses and understands customer feedback on and sentiment towards products/
services
Topic modelling Categorises diverse statements into different topics (claims, policy changes, customer
inquiries)
Keyword extraction Extracts medical records, identifies key entities (company names, products, individuals),

and helps detect fraudulent activities

56 An Open API framework rolled out by the IA on 18 September 2023, which enables seamless integration and data sharing between insurance companies and authorised third-

party developers.

57 An Open API framework published by the HKMA on 18 July 2018, which allows Hong Kong banks to provide third-party service providers (TSPs) with access to the banking

systems and retrieve specific information and services.
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3.1.2 Step 2: Confidential Identity or
Feature Matching

Step 2 involves identifying the same entities in data from
different sources. ‘ldentity matching’ focuses on matching
personal IDs in data from different sources, while ‘feature
matching’ matches up specific characteristics or features of
an entity in data from different sources. Without this process,
different data sources containing IDs and features all relating
to a single entity may lead the model to treat each as relating
to a separate entity. This can lead to data fragmentation, and
ultimately, training failures. In the FL context, proper matching
is essential for accurately consolidating data in order to make
the learning process more effective and reliable.

In some FL implementations, participants use hash-based
methods for identity or feature matching. However, using
weak hash functions (e.g. MD5 or SHA-1) without additional
protections can expose vulnerabilities that may enable
reverse engineering. For instance, hashing of predictable data
(e.g. names or dates) with a weak function can be cracked
using rainbow tables, precomputed tables for reversing
cryptographic hashes that are commonly used in password
cracking. To mitigate this, a strong hash function (e.g. SHA-
256) should be used and a unique salt appended to the input
before hashing. Salting ensures that identical inputs produce
different hashes, rendering rainbow tables ineffective unless

the salt is compromised.

The choice between identity and feature matching depends
on the specific scenario and the nature of the FL process.
Identity matching is common in vertical federated learning
(VFL), where identifiers or existing records are used to verify
data from different sources. By contrast, feature matching is
relevant in horizontal federated learing (HFL), where specific
attributes are standardised for compatibility and consistency in
model training. The automated platform advances to the model

training phase once identities or relevant features are matched.

3.1.3 Step 3: Model Training and
Aggregation

Model training: This is the stage at which a selected model
learns from labelled training data to generate accurate
predictions or decisions. In an automated system utilising FL,
model training occurs on local participant servers, while model

aggregation takes place on a central server where locally
trained models are combined into a single global model.

The specific requirements and characteristics of a data analysis
task determine whether to apply a common ML approach or a
deep learning approach for model training.

(i) ML: Suitable for tasks with relatively straightforward data
patterns and relationships. It works effectively with labelled
data of a moderate size and complexity, and can analyse
features to make accurate predictions. Section 3.2 offers a
detailed overview of common ML processes.

(il Deep learning: Ideal for tasks with complex data patterns
and relationships, such as image or text analysis. Deep
learning models, particularly neural networks (NN), excel at
uncovering complex patterns from large datasets, enabling
highly accurate predictions.

During training, the model adjusts its internal parameters to
enhance the accuracy of its predictions based on the labels
of the training dataset. This process uses iterative optimisation
algorithms like gradient descent to update the model's
parameters® based on the calculated error or loss. The model
continues training until it reaches a satisfactory performance
level. Having learned from the training data, the model is now
ready to evaluate and make predictions about new and unseen
data.

Model aggregation: After local model training on the client’s
server, the trained parameters are shared with a central server
administered by a coordinator. The coordinator’s primary role
is to facilitate the FL process, manage communication, and
aggregate model updates. The coordinator does not access
the clients’ raw data or require its transmission under any
circumstances, ensuring that the underlying data remains local
to each client. The coordinator is typically an independent entity
with no conflicts of interest, enabling decentralised training
while serving as a central point of coordination, quite different
from the centralised data aggregation required by conventional
models. While having a coordinator might seem to contradict
the decentralised nature of FL, this role is intended to support,
not compromise, decentralised training. The coordinator’s
role includes facilitating communication, aggregating model
updates and maintaining participant autonomy, thus enhancing

58 Model parameters are configuration variables that are internal to the model and learned during the training process. The specific set of model parameters depends on the type
of model being used. For example, if a linear regression model is being used, the model parameters would include the slope (weight) and intercept.
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the process and ensuring efficiency without centralising
control. Emerging FL frameworks are continuing to explore
fully distributed approaches to further minimise any reliance on
central coordination.

The following steps are integrated into the coordinator’s
backend system and processed automatically:

i. Collection of model parameters: The coordinator
receives the trained model parameters from the local
models, which consist only of metadata such as model
gradients representing the knowledge acquired by each
local model.

i. Federated model aggregation and update: Using FL,
the coordinator performs computations on the encrypted
model updates using homomorphic encryption techniques,
enabling the parameters to be combined while preserving
privacy and minimising the risk of exposing sensitive data.
Once the model aggregation is complete, the coordinator
updates the global model parameters based on the
aggregated results.

ii. Updated model distribution: The coordinator distributes
the updated global model parameters back to the local
models, enabling them to learn from each other and

improve their performance.

3.1.4 Step 4: Smart Decision-making

In the final step of the collaborative data analysis process,
insurance companies are able to harness the trained model’s
predictive power to make informed decisions. By combining
federated data analytics and conventional analysis models,
deeper insights for various insurance tasks can be made
available. This includes forecasting market trends, detecting
fraudulent claims, and identifying factors that influence renewal
decisions.

3.1.5 Step 5: Ongoing Assessment

Step 5 involves the ongoing assessment and evaluation of
model performance in real-world environments to ensure
models remain accurate, reliable, and effective over time. One
effective strategy for ongoing evaluation is the champion-
challenger approach, which has been widely adopted in
industries like insurance and is a key component of machine

learning operations (MLOps), a set of practices that automate
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and simplify machine learning workflows and deployments.
By enabling the simultaneous evaluation of established
(champion) and innovative (challenger) models, the champion-
challenger approach aims to improve operational efficiency and

performance, thereby facilitating the production process.

The “champion” is the current operational production model,
which is performing reliably and has a proven track record.
The “challenger” is a new model, often powered by advanced
ML, alternative data or FL, which is tested in parallel using
the same input data. If the evaluation metrics (e.g. accuracy,
risk prediction, or cost efficiency) show that the challenger
outperforms the champion, the challenger can replace it
and become the new champion. This iterative cycle fosters

continuous improvement.

The champion-challenger approach offers several advantages:

¢ Integration of strengths: Conventional models provide

stability and reliability, while FL models, leveraging
decentralised data, may uncover novel patterns. Combining

them offers a balance of proven and cutting-edge insights.

e Continuous improvement: Testing FL models alongside
conventional ones allows insurers to refine their predictive
capabilities iteratively, and adopt superior models as they

emerge.

e Enhanced insights: FL challengers can capture complex,
distributed data patterns that conventional champions
might miss, enriching analyses.

¢ Risk mitigation: Pairing innovative FL. models with trusted
conventional ones reduces the risks associated with
using untested methodologies, grounding decisions in
established strategies.

This dual approach enhances accuracy and comprehensiveness
across key areas:

e Validation & trust: Conventional models serve as a
benchmark, cross-validating results to flag anomalies and
build confidence in prediction.

The

champions supports high-stakes decisions, while FL

e Risk management: reliability of conventional

adapts to emerging trends.



e Adaptation: FL models excel at rapid adaptation to new
data patterns, complementing the stability of conventional

models for reporting and planning.

e Regulatory/ethical: Conventional models may align better
with regulatory or ethical constraints, while FL evolves to
meet these standards over time.

Figure 11 Standard steps in a traditional ML model

>

Data preparation
and preprocessing

Model trainig
and validation

Preparation Training

3.2.1 Data Preparation and
Preprocessing

Data preparation and preprocessing are the initial steps in the
ML pipeline. Once data is collected, the preprocessing phase
begins, which includes data integrity checks and new variable
derivation.

>
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3.2 Development of Machine
Learning Models

FL ensures data confidentiality and privacy by having
participants train their models in a decentralised manner. The
fundamental steps for training local models remain the same as
in the traditional ML model training process. The following four
steps summarise these processes:

Model
explainability

Model evaluation

>

and prediction

Evaluation Interpretation

e Data integrity checks: These help identify and fix data
problems or errors before model training, to ensure data
quality and reliability. Each attribute or field in the dataset is
validated for the correct data type, and any discrepancies
are flagged. The checks also identify missing values, such
as empty fields or NULL values. Table 16 below outlines
strategies for handling specific data integrity issues.

Table 16 Strategies for handling specific data integrity issues

“ Strategies

Outlier
from the rest.

Missing Values

Data Anomalies
and Errors

Data points that are significantly different °

Entries with no value due to input errors, °
equipment malfunctions, or data corruption.

Irregularities or inaccuracies that deviate °
from expected patterns or behaviour.

Remove if due to errors or extreme values.

e Retain and manage if they represent true
values.

Impute using mean or median of the existing
data, if the absence of value is random.

e Use regression analysis to estimate based on
known values, if there are correlations with
other variables.

Employ anomaly detection, using statistical
models or machine learning (ML) algorithms
to identify unusual patterns.

e Implement data cleaning such as
deduplication, typo correction, and imputation
to address data errors.
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e New variable derivations: This involves creating new
variables from existing data to enhance the model’s
predictive power or descriptive capability. New variables are
derived through mathematical operations, transformations,
or combinations of existing variables, with the aim of
uncovering additional information or patterns that may not
be readily apparent in the original dataset. Table 17 lists
different methods for new variable derivations. By applying
these methods, each party enriches its own dataset to
capture local patterns. When aggregated into a global
model via FL, these enhanced local models contribute to

greater accuracy and nuance.

However, FL's decentralised nature presents challenges when
variables depend on data held by different parties. For instance,
if Party A holds data on a person’s height and Party B data on
their weight, direct calculation of their body mass index (BMI)—
calculated as weight divided by height squared—cannot be
performed without sharing raw data, a situation which FL seeks

to avoid.

FL addresses this issue through specific model architecture or

secure protocols. In this example, the process would work as

Table 17 Methods for new feature derivations

follows:

1. Local preprocessing: Each party can preprocess its data
individually. For instance, Party A can compute the square
of the height (height?), while Party B retains the weight.

2. Secure aggregation: During the FL process, these
preprocessed inputs can be shared in a secure manner.
The global model learns to combine these inputs without
ever needing access to the raw height or weight.

3. Collaborative insights: By aggregating these local

computations, the global model can effectively estimate

BMI, despite not having direct access to the complete data

from either party.

Additionally, advanced techniques like secure multi-party
computation can derive such features privately, although they
increase the computational cost. Table 17 lays out methods for
local new feature derivations. However, FL's strength lies in its
ability to generate collaborative insights from distributed data
without centralising it, in a balance of privacy and utility.

Mathematical Transformations

Create new or modify existing variables using mathematical functions to normalise

variables or data, reduce skewness, or establish non-linear relationships. Common
types include logarithmic, exponential, square root, and power transformations.

Interaction Terms

Create new variables that represent the product or combination of two or more

existing variables, assessing how one predictor variable affects the relationship
between another predictor and the outcome variable.

Aggregation

Combines multiple pieces of data into a single summary statistic, using methods

such as summing, averaging, or finding the maximum or minimum values. This
is particularly useful for time series data, where aggregation occurs over specific

periods.
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3.2.2 Model Training and Validation ¢ Testing set: The testing set is used to evaluate the trained

model’s performance. By assessing the model’s predictions

Local machines preprocess raw data into meaningful high- ) ) ) )
against this dataset, various performance metrics, such

uality data, which is then divided into training and testin ,
j y 9 9 as accuracy, can be calculated. This helps gauge how
atasets.
effectively the model is able to generalise to new, unseen
data and how accurately it can answer specific questions
e Training set: ML algorithms construct the model and train L ,
or make predictions (see Figure 12 for the workflow).
it by feeding it labelled examples from the training set. The
model is trained by learning patterns and correlations from

the input data.

Figure 12 Workflow of ML model training

Training dataset

Training dataset

It is difficult to draw a definitive conclusion about the best  for prediction necessitates a continual evaluation of both older

@ — Accuracy
—_—

Trained model

Data processing

Machine learning
algorithms

Dataset

algorithm for use in the insurance sector because different  and state-of-the-art ML models. Table 18 summarises and
algorithms’ predictions are highly dependent on the alternative ~ compares several typical or ML algorithms.
data available. Thus, selecting an appropriate ML algorithm

Table 18 Comparative analysis of ML algorithms

Algonthm -

Logistic Probabilistic e Predicts the probability of e Simple and easy e Assumes a linear
Regression method a binary outcome based on to interpret relationship
(LR) one or more independent e Efficient to train between features
variables. and predict e |ess effective
e Commonly used in e Provides on data with a
classification tasks with probabilistic complex pattern
categorical outcome outputs e Sensitive to outliers
variables.
Naive Bayes Probabilistic e Applies Bayes’ theorem e Computationally e Assumes
method and assumes conditional efficient independence
independence among e  Works well on between features
features to calculate class high-dimension which may not
probabilities, selecting the data always be valid
most probable class as the e Susceptible to
prediction. irrelevant features

¢ Quick and effective for large
datasets with many features.
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K-Nearest
Neighbours
(KNN)

Decision Tree

Random
Forest
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Non-
parametric
method

Tree-based
method

Ensemble
learning
method-

Bagging

Uses proximity to classify o
or predict the grouping of a

single data point.

One of the most popular and °
simplest classification and
regression classifiers used

in ML today. o
A flexible algorithm capable .
of handling classification

and regression tasks by .

creating a tree-based model
that partitions data using
feature values.

Known for its interpretability
and ability to handle both
numerical and categorical
data types, offering a
versatile solution in ML for
various applications.

Improves the accuracy of °
prediction by aggregating

the predictions of multiple
individual decision trees. .
Robust enough to handle
high-dimensional data well.

Easy to o
understand and
implement

Works well with o
nonlinear decision
boundaries

Can handle °
multi-class
classification

Easy to interpret o
and visualise o
Robust in

handling missing
values and

outliers

Reduces o
overfitting through
ensemble learning
Robust in parallel o
or distributed
computing

Sensitive to the
choice of parameter
value K

Requires
appropriate scaling
of features

Hard to explain

the underlying
relationships
between data

Prone to overfitting
Sensitive to small
variations

More complex than
one single decision
tree

Lack of
interpretability
compared to a
single decision tree



Gradient
Boosting/
XGBoost

Neural
Network (NN)

Ensemble
learning
method-
Boosting

Deep learning
method

Part Three: Federated Learning Infrastructure for the Insurance Industry

Combines weak learners
(usually decision trees) to
create a strong predictive
model.

Through iterative training
and the addition of new
models, aims to correct the
mistakes made by previous
models, thereby improving
overall prediction accuracy.

A computational model
inspired by the human brain,
made up of interconnected
artificial neurons in layers.
Excels at learning complex
patterns and relationships,
making it suitable for tasks
like classification, regression,
and image recognition.
Common types include

the Multi-Layer Perceptron
(MLP) for classification and
regression, Convolutional
Neural Networks (CNN)

for image and video
processing, and Recurrent
Neural Networks (RNN) for
sequential data tasks.

Able to handle
complex data
High predictive
accuracy

High predictive
accuracy

Easy to handle
non-linear data
with a large
number of
features

Sensitive to
overfitting
Computationally
expensive and
time-consuming

Large network size
Computational
complexity,
requiring much
parameter tuning
Lack of
interpretability

Another approach for assessing a model’s performance is
cross-validation. This involves dividing the dataset into multiple
folds, and using one of these folds as a validation set while
carrying out training on the remaining folds. This process is
repeated multiple times, using a different fold as a validation
set each time. Finally, the results from each validation step
are averaged to produce a robust estimate of the model’s
performance.

3.2.3 Model Evaluation and Prediction

For insurers, reliable assessment models should be capable
of providing answers to important questions regarding the
likelihood of a policyholder making a future claim, the expected
severity or cost of potential claims, and the appropriate premium
rate and coverage limits for a specific risk profile. Ensuring the
reliability of these models requires effective techniques and
practices for model evaluation. Table 19 illustrates several
common metrics used to evaluate the performance of ML

models, depending on the problem type.
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Table 19 Overview of key performance metrics in ML

“ Application oo

Area Under the 0 to 1, above 0.8 is often The area under the Receiver Operating Ranking problems, binary
Curve (AUC) considered good Characteristic (ROC) curve®. A classification
higher AUC value indicates better
discrimination between positive and
negative instances.

Accuracy 0 to 1, above 0.8 is often Proportion of correct predictions General classification
considered good among total predictions, providing problems where classes
an overall measure of the model’s are balanced
correctness.
Precision 0 to 1, above 0.7 is Proportion of true positives (TPs)®' When false positives
generally considered among all predicted positives, are costly (e.g. spam
good measuring the ability of the model to detection)

avoid false positives (FPs)® such as
classifying legitimate emails as spam.

Recall 0 to 1, above 0.7 is often Proportion of TPs among all actual When FNs are costly (e.g.
considered good positives, quantifying the model’s medical diagnosis, fraud
capability to avoid false negatives detection)

(FNs)%, such as cases where patients
with a disease are missed or incorrectly
classified as negative.

F1 score 0 to 1, above 0.7 is Combines both precision and recall, Imbalanced classification
considered good useful when there is an imbalance problems
between the positive and negative
classes.
MSE Always non-negative The average of the squares of the Regression tasks

errors between actual values and
predicted values, making it easier to
compute the gradient.

KS index 0 to 1, a higher value Measures the maximum difference Binary classification
indicates better between the positive and negative problems
performance classes
59 The threshold for “good” depends on the specific problem being addressed.
60 The ROC curve is a graphical plot that showcases how well the model performs. It visualises the relationship between the true positive rate (TPR) and the false positive rate (FPR)
over all possible acceptance thresholds.
61 True positives (TPs) occur when the model’s prediction matches the truth.
62 False positives (FPs) are cases where the model incorrectly predicts a positive outcome for negative instances.
63 False negatives (FNs) occur when the model predicts a negative outcome, while the true class is positive.
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Once an ML model has been trained and evaluated, it is ready
to make predictions on new, unseen data. Model prediction is
the process of using the trained model to generate output or
make decisions based on input data.

3.2.4 Model Explainability

The pursuit of improved predictive accuracy has led to
increased model complexity, with deep learning being at the
heart of many state-of-the-art ML systems. However, this
complexity comes at a cost: deep learning models are often
opaque and difficult to interpret, earning them the nickname
“black boxes”.

Lack of interpretability can be a major obstacle to trust,
particularly in sensitive areas like finance, transportation,
and healthcare. For instance, a bank using Al to make credit
decisions must provide clear reasons for loan denials, or
customers may lose trust in the system and feel unfairly
treated. Similarly, autonomous vehicles must be able to
explain their driving decisions, as a lack of explainability can
lead to scepticism and a reluctance to adopt the technology.
In healthcare, if doctors and patients cannot understand the
reasons for the recommendations generated by ML algorithms,
they are likely not to trust these recommendations. The need
for trustworthy, fair, robust, and high-performing models has
led to the rise of Explainable Artificial Intelligence (XAl). XAl aims
to make Al models transparent, interpretable, fair, and robust
by providing insights into their decision-making processes,

addressing biases, ensuring reliability, and fostering user trust.

Several tools and libraries have also emerged that are helping
make Al models more transparent and interpretable. Examples
include:

e Python software libraries such as Scikit-learn which can
analyse Al models and explain which factors or features in
the data are most important for the model’s predictions.
This helps users understand how the Al is making decisions.

e Tools such as Explain Like I'm 5 which can break down the
reasoning behind an Al model’s output in plain language
and explain it in simple terms. This makes the inner workings

of complex Al models more accessible.

e Software that uses mathematical concepts like “Shapley
values” to visualise the influence of different input factors
on an Al model’s output, offering insights at both local and
global levels. This provides a more comprehensible way to
interpret how the model is arriving at its conclusions.

e Libraries such as Local Interpretable Model-Agnostic

Explanations can explain the predictions of any type of Al

model, even ones that are very complex and extremely

difficult to understand. This increases transparency by

providing detailed insights into individual predictions.

These types of interpretability tools are making it easier for
humans to understand and trust the reasoning behind Al-
powered decisions and predictions, thus making Al models
more transparent and accountable.

3.3 Privacy-enhancing Techniques
for Federated Learning

FL is a prominent privacy-enhancing technique, but it is not
entirely immune to the risks of data or model leakage under
adversarial attacks, as discussed in Part Two. The real-world
environment often presents complex challenges in this respect.
Despite this, the Hong Kong government has recognised the
importance of promoting the digital economy and building a
robust data trading ecosystem within the region, making further
enhancements to the reliability and practicality of FL a crucial

focus area.

This section discusses privacy-enhancing techniques (PETs)
for FL systems and explores specific PETs that address
the challenges associated with identity matching in FL
environments.
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3.3.1 Key Privacy-enhancing
Techniques

3.3.1.1 Overview of PETs

Common examples of mainstream PETs include secure
multi-party computation (SMPC), differential privacy (DP),
homomorphic encryption (HE), and confidential computing.
Table 20 summarises each type and discusses their pros and

cons.

e SMPC

SMPC enables collaborative data analysis while preserving
privacy by allowing separate parties to jointly derive insights
without revealing specific data values. One key technique is
secret sharing, which involves dividing sensitive data into
shares that are distributed among multiple parties, ensuring
that no single party has complete access to the original data.

In the context of the insurance industry, SMPC allows insurance
companies and data providers to perform joint computations
on encrypted data, facilitating collaborative model training and
analysis without exposing sensitive information. This approach
enables the encrypted results to be shared, helping insurance
companies benefit from external insights while complying with

data privacy and regulatory requirements.

* DP

Compared to data anonymisation, DP provides a quantifiable
privacy guarantee by introducing random noise into the
dataset. This is measured by a parameter called epsilon. A
smaller epsilon value indicates a stronger privacy guarantee,
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as it represents more noise and a lower risk of re-identification.
In FL, each device or organisation applies DP techniques to
add controlled noise to their local data before sharing it with
a central server. This enables insurance companies to protect
policyholder identities and protect customer privacy, while still
enabling collaborative data analysis.

e HE

HE is a cryptographic technique that allows computations to
be performed directly on encrypted data, without the need for
decryption. Unlike SMPC, which involves collaboration among
multiple parties, HE integrates encryption and decryption
processes into the computation itself. This minimises the need
for additional communication and interaction between parties
during computation, enhancing efficiency.

¢ Confidential computing

Confidential computing enables data to be processed within
a secure environment, enhancing data security by preventing
unauthorised access during computation. It employs two
key security techniques: isolation, which protects sensitive
information while in use, and remote attestation, which verifies
this protection and the data’s intended purpose before

computation begins.

Trusted execution environments (TEE) are essential for
confidential computing, as they provide for the hardware-
enforced isolation of sensitive code and data. TEEs are secure
enclaves that protect against external tampering, including
tampering by privileged system software such as an operating
system or hypervisor, while maintaining confidentiality and

integrity during execution.



Table 20 Summary of key PETs and their pros and cons

“

Secure
multi-party
computation
(SMPC)

Homomorphic
encryption (HE)

Secure
communication
protocols

Differential
privacy (DP)

Confidential
computing

Protects parameters sent from
participants to ensure that they do not
reveal their inputs.

Encrypt local parameters from all
participants. The coordinator server
receives an encrypted global model

which can only be decrypted if enough
local models have been aggregated.

Protocols between clients and
between clients and the central server.

Utilises protocols to prevent man-in-
the-middle attacks, eavesdropping,
and tampering.

Adds noise to a particular individual’s
data to hide the fact that the
individual’s data was used in the
training task.

Uses trusted execution environments
(TEE) to isolate and secure the
execution of code and data.

Privacy preservation
Data security
Decentralised
computation

Data privacy
Secure computing
Flexible applications

Data confidentiality
Ensuring the
information integrity
Standardised
communication
protocols

Privacy guarantee
Resilience to data
breaches
Algorithmic
foundations

Enhanced security

Part Three: Federated Learning Infrastructure for the Insurance Industry

Communication
overhead

Scalability limitations
Highly rely on practical
factors like network
bandwidth

Computational
overhead

Complex key
management

Lack of widely
accepted standards
and protocols

Complex to implement
Performance overheads
Vulnerability to attacks

Accuracy trade-off
Limited application
scenarios

Difficulty in parameter
tuning

Complex
implementation

Limited availability
Performance overheads
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3.3.1.2 Fast-Training strategy module
(FSTM)

Privacy-preserving techniques often require extra computations,
such as noise addition, data transformations, cryptographic
proofs, and secure communication protocols. These extra
computations introduce additional computational overheads,
as a trade-off for protecting privacy. Operations such as
encryption and decryption involve complex mathematical
calculations such as modular exponentiation and multiplication,
while the generation of cryptographic keys, including public-
private key pairs, is computationally intensive.

The FTSM®* is proposed as a way of making privacy-enhancing
techniques more practical for a real-world FL platform. This is a
module that aims to improve the efficiency and computational
performance of the FL training process by enabling faster
Table 21
provides a comparison of the characteristics of the FSTM and

training while preserving privacy guarantees.

mainstream PETSs.

Table 21 Comparison of the FTSM and mainstream PETs

Homomorphic encryption

Aspect
(HE)
What is Public-private key pairs for
Generated? encryption

Key Computation
Feature

Performs computation on
encrypted data without
decrypting data

Type of Delivered
Data

Encrypted model
parameters, such as
gradient

Characteristics High computational

complexity

Large ciphertext size

As shown in the table, HE algorithms can suffer from
performance inefficiencies due to the overheads associated
with maintaining public-private key pairs. DP, which addresses
privacy concerns by introducing noise into calculation results,
can compromise accuracy and performance.

Differential privacy

Noise, such as Laplace
noise or Gaussian noise

Adds noise to the
computation parameters or
output results

Computation parameters
with added noise

Noise might impact model
accuracy and performance

Fast-training strategy module

(DP) (FSTM)

Beaver triple matrix for training

Performs computation on a matrix
with randomness

Computation matrix manipulated by
the random matrix

Matrix speeds up the calculation
process but increases the
implementation complexity

Comprehensive design is required
before implementation

By comparison, the FTSM’s use of matrix calculations delivers a
significant improvement in computational speed, mainly due to
the parallelisability of matrices and their inherent mathematical
properties. Leveraging these properties allows for efficient
parallel computations, resulting in faster execution times and

enhanced computational efficiency.

64 Yang Liu et al., A Secure Federated Transfer Learning Framework, IEEE Intelligent Systems, 2020.
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3.3.2 Secure Identity Matching for
Utilisation of Alternative Data

Once each participant has uploaded their data to their
respective local servers, conducting secure data matching
(e.g. identity matching or feature matching) while ensuring the
protection of sensitive information becomes a crucial challenge.
Traditional identity matching methods often involve sharing
personally identifiable information (Pll), posing significant risks
to data privacy and security.

Privacy-preserving identity matching techniques have been
developed to address these concerns. One is private set
intersection (PSI), which enables parties to find common
elements or matches between their datasets without revealing
any non-matching data, allowing for secure collaboration
and identity reconciliation without directly exposing sensitive
information.

Table 22 Classification and details of PSI protocols

PSI protocols

Key approach

Part Three: Federated Learning Infrastructure for the Insurance Industry

3.3.2.1 Overview of PSI

e PSI: PSl is a SMPC that allows organisations to identify
common elements in their datasets without revealing the
specific contents of their respective datasets. PSI only
shows the shared features across different datasets,
facilitating the linking of individuals or data elements across
organisations for various use cases. It reduces privacy risks
by only revealing the standard features shared between
two datasets, without requiring both parties to disclose
their entire datasets to each other.

e Classification of PSI protocols: Achieving the secure
intersection of two sets without compromising the
confidentiality of any information except the resulting
intersectionis a significant challenge for secure computation.
Several techniques have been suggested to address this
problem, including the efficient yet insecure naive hashing
solution, protocols that rely on a partially trusted third party,
protocols based on public key, circuit-based PSI, and
Oblivious-Transfer PSI. Each category is discussed in detail
below (see Table 22%9):

Naive hashing

Server-aided/
Third party-based

Public key
cryptography-based

Generic protocol/
Circuit-based

Oblivious
transfer-based

Uses a hash function to hash its
stored elements

Employs a third party to achieve
better performance. The server could
be semi-honest, covert, or malicious.

Encrypts the elements using public-
key cryptography, such as the Diffie-
Hellmann key agreement and blind
RSA

Uses generic secure computation

The receiver obtains one out of
multiple potential messages from the
sender without the sender learning
which specific message was chosen
or revealed to the receiver.

Efficient in run time
and communication

Reduced
communication
overheads

Does not require a
trusted third party or
central server

High security

Efficient
communication

Vulnerable to a
brute-force attack

Hash collisions

Secure only if the
third party does not
collude with any of
the other clients

Requires proper key
management

Large communication
overheads

Circuit-based
approach requires
expensive
computation and
communication

Needs intensive
computation

Requires large
computational
resources

65
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Basic PSI process: In general, there is no single universally
accepted standard process for PSI. The following steps

provide a simplified overview of how PSI typically works:

Setup: The participating parties agree on a cryptographic
scheme and establish their private sets.

Encryption: Each party encrypts its set using a secure
encryption scheme that allows for set membership testing
without disclosing the actual elements.

Exchange: The encrypted sets are exchanged between the
parties, ensuring the preservation of privacy. This exchange
can occur directly between the parties, or through a trusted
intermediary.
Intersection: Each party performs operations on the
received encrypted sets to determine the common
elements. This typically involves comparing the encrypted
values and identifying matches.

Decryption: Once the intersection has been identified, the
parties can decrypt the matching elements to reveal the
details in their sets.

PSI applications: PSI has a wide range of real-world
applications across various domains. For instance, PSI
can be used in fraud detection and anti-money laundering,
online recommendation systems, confidential data sharing,
border

protection and no-fly lists, network security

operations, customer list intersections for marketing,
medical research and patient data analysis, multi-party
access control, enterprise network auditing, and many

more situations. Some practical examples are listed below:

¢ Insurance companies: Multiple insurance companies
can use PSI to find intersections in their customer lists,
enabling them to identify shared customers without

disclosing individual customer information.

¢ Healthcare providers: PS| can facilitate the secure
exchange of medical information between healthcare
providers in a way that complies with privacy regulations.
It ensures that sensitive patient data remains protected

e 062 Whitepaper on Federated Learning / 2025

while enabling efficient data sharing for improved
healthcare outcomes.

¢ Social network applications: In a social network
application, two users can use PSI to discover common
friends without revealing other friends that are not in the
intersection. This preserves privacy while still enabling
social connections to be established.

However, PSI can introduce certain risks, such as risks of
re-identification due to inappropriate intersection sizes or
over-analysis. In our proposed framework, a CIMM has been
designed for identity matching purpose to mitigate such
risks. The CIMM uses secure hashing combined with random
number generation to protect identities by transforming them
into hashed representations, with only partial intermediate
results sent to a neutral coordinator who has no access to the
raw data. The coordinator uses HE to compute on encrypted
data, enabling identity matching without revealing sensitive
information.

3.3.2.2 Confidential identity matching
module (CIMM)

¢ Problems with general FL frameworks
Lack of a third party acting as coordinator

In a VFL framework that lacks a third party acting as a
coordinator, the hashed values of raw identities are exchanged
between parties A and B, or party A sends the hashed values
to party B to compare the matches. However, this approach
poses risks to the privacy and security of the data because
the partner party now holds the hashed values, leaving them
potentially vulnerable to attackers. For instance, an attacker
may employ brute-force attack techniques to uncover the
original data.

Untrusted third party

A third party is a critical component of the FL framework.
However, if the third party is not trustworthy, it could collude
with one of the parties, leading to biased models, data
breaches, or other security threats. For example, the third
party could intentionally introduce bias into the model, or leak

sensitive data to a competitor.



Reverse engineering with a third party

Even with a third party, the encrypted data received from
parties A and B can still be vulnerable to reverse engineering
attacks. Reverse engineering is the process of analysing the
encrypted data to uncover its hidden patterns and relationships,
compromising the privacy of the data and potentially leading to
data breaches. For instance, an attacker could use clustering
algorithms to identify patterns in the hashed data and infer
sensitive information about the data owners.

e CIMM

The focus of our CIMM is identity matching, which involves
comparing and correlating data from various sources while
maintaining privacy. It employs a hash function and the HE
technique to securely match identities across different clients,
as well as a neutral third party to distribute the matched results,
either Boolean or operator, back to the clients. Some highlight

features are as follows:
1. Secure hashing with random number generation: The

CIMM employs hashing techniques to transform the original
identities into hashed representations. It also includes

Table 23 How the CIMM solves key problems

Problems

Part Three: Federated Learning Infrastructure for the Insurance Industry

random number generation to enhance the privacy and
security of the identities. This combination provides an
additional layer of security for sensitive information, with
only a portion of the intermediate computation results sent
to the coordinator.

2. Neutral coordinator: The coordinator computes the
difference between the clients’ encrypted identities and
returns the result. This process enables clients to determine
matches or non-matches without revealing sensitive
information. In this research, the coordinator (the Insurance
Authority) had no access to the raw data stored on the
clients’ devices. Further details about the coordinator’s role

can be found in Section 3.1.3.

3. HE for secure computations: The coordinator performs
computations directly on the encrypted data using HE
techniques without the need for decryption.

Table 23 provides a detailed overview of how the CIMM
addresses the identity-matching problems described above.
It highlights the role of the neutral coordinator, the use of
encrypted data exchange, and the protection it offers against

reverse engineering.

How our module solves the problems

Lack of a third party acting
as coordinator

Untrusted third party

The CIMM incorporates a coordinator to oversee the matching process. Hashed identities
are encrypted, adding an extra layer of protection to safeguard the privacy of the data.

The coordinator’s neutrality ensures that it cannot collude with any of the clients. Even if

collusion were to occur, the coordinator does not have access to the original identities.

Reverse engineering with a
third party

The coordinator receives the differences between the encrypted identities rather than the
encrypted identities themselves.
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Part Four:

Technical Evaluation of the Proposed Framework

This part evaluates the technical feasibility of using the FL
framework introduced in Part Three in the insurance industry.
The objective is to assess the framework’s performance and
efficacy using real-world insurance-related datasets.

Before the PoC work was undertaken, different ML algorithms
were first evaluated on a set of open-source datasets. These
were grouped into three categories based on their source
characteristics, namely generic policyholder information,
premium data, and finance data. The experiments were
conducted to evaluate how alternative data sources and varying
data volumes influence different ML models’ performance.
Models were trained and tested with different data groups, and
the model performance was assessed with the Area Under the
Curve (AUC) metric. An assessment of the fast-training strategy

module (FTSM) was also undertaken.

4.1 Introduction to the Experiments

The experiments tested eight ML algorithms: Logistic
Regression (LR), Naive Bayes, K-Nearest Neighbours (KNN),
Decision Tree, Random Forest, Gradient Boosting, XGBoost,
and Neural Network (NN). Each algorithm was independently
trained with hyperparameter tuning to optimise configurations.
Detailed algorithm descriptions are in Section 2 of Part Three,

while tuning specifics are omitted for brevity.

Conducted in a Jupyter Notebook, the experiments involved
splitting the data into parts that acted as diverse data sources
from different parties. Performance outputs were exported
for analysis and their effectiveness was assessed using ROC
curves and the AUC, which serves as a reliable measure of
classification performance.

The aim was to assess the likelihood of a policyholder paying
the 13th-month premium at the new business stage. Accurate
predictions of policy renewals are important for insurers,

helping them design better policies and improve their customer
retention strategies. The experiment consisted of two parts:

e Experiment one: Evaluated how different algorithms
handled alternative data, specifically in a vertical federated
learning (VFL) scenario, by dividing the dataset into groups
based on generic, premium and finance characteristics,
and using AUC for performance assessment.

e Experiment two: Assessed the effectiveness of enhancing
data volume in model training within a horizontal federated
learning (HFL) scenario, maintaining AUC as the consistent
evaluation metric.

4.2 Data Overview

This experiment employed an insurance dataset obtained from
Kaggle®, consisting of 100,000 records, 38 features, and one
binary label indicating whether the 13th-month premium was
paid or not. To ensure the data quality, 28 important features
and 57,580 rows of records without missing values were
selected. This cleaned data was categorised into three distinct
groups based on the data properties. Table 24 provides
a breakdown of this categorisation from VAR1 to VAR28,
presenting the division of the raw dataset into three categories,
namely generic data (containing application life-assured
basic information, agent information and health-related data),

premium information data, and financial information data.

To further refine the input data for modelling, standardised
operations were applied on certain features, such as Applicant’s
Policy Annualised Premium, Applicant’s Policy Sum Assured,
and Application Life Assured Income. This step was necessary
because these features initially had varying scales. For example,
the Policy Sum Assured had a wide range of values, from O
to 700,000,000. Standardisation rescaled these features to a

more suitable range for effective model training.

66 Benny Pinkas et al., Scalable Private Set intersection Based on OT Extension. ACM Transactions on Privacy and Security, 2018.
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Additionally, the dataset contained some categorical variables
that cannot be directly processed by most ML algorithms.
Specifically, there were 11 categorical variables in the generic
data category, 7 in the premium data category, 2 in the finance
data category, and 1 categorical target variable, making
a total of 21 categorical variables. For instance, the Policy
Product Category, which includes categories such as Pension,
Protection, Savings, Investment, and Children’s Plan, was

transformed into numerical values. This conversion enabled the

ML models to interpret the categorical data and incorporate
it into their learning process. To convert these categorical
variables into a numerical format, the use of encoding

techniques was necessary.

These steps of standardising features and encoding categorical
variables were crucial for refining the input data, ensuring
that the models could effectively learn from the data, capture

meaningful patterns, and make accurate predictions.

Table 24 Variables of the insurance dataset for predicting 13th-month payment behaviour at the new

business stage

Variable flag Category name Variable detail Variable Type

VARO Identification Masked Policy Identifier Unique ID

VAR1 Generic data Application Life Assured Age Numerical

VAR2 (Including application Application Life Assured Education Categorical
VAR3 life assured basic Application Life Assured Gender Categorical
VAR4 information, agent Application Life Assured Industry Numerical

VAR5 information and Application Life Assured Marital Status Categorical
VARG health-related Application Life Assured Nationality Categorical
VAR7 information) Application Life Assured Occupation Categorical
VARS8 Application Life Assured Residential Status Categorical
VAR9 Application Life Assured State Categorical
VAR10 Application Life Assured City Numerical

VAR11 Application Life Assured City Tier Numerical

VAR12 Mapped Agent Branch Categorical
VAR13 Mapped Agent Vintage Categorical
VAR14 Life Assured Alcohol Declaration Categorical
VAR15 Life Assured BMI Numerical

VAR16 Life Assured Smoker Declaration Categorical
VAR17 Premium data Applicant’s Policy Rider Opted Flag (Y/N) Categorical
VAR18 Application’s Payment Frequency* Categorical
VAR19 Applicant’s Policy Annualised Premium Numerical

VAR20 Application Sourcing Channel Categorical
VAR21 Application’s Policy Contract Branch Categorical
VAR22 First Premium Payment Type Categorical
VAR23 Applicant’s Policy Product Category Categorical
VAR24 Policy Product Name Categorical
VAR25 Policy Sum Assured Numerical

VAR26 Finance data Application Life Assured Income Numerical

VAR27 Application’s Policy Price Sensitivity (Y/N) Categorical
VAR28 Auto Debit of Premium Opted Flag (Y/N) Categorical
TARGET / Paid the 13th-month Premium at New Business Categorical

Stage (Y/N)

Application’s Policy Premium Payment Frequency
/: not applicable
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4.3 Experiment One: Impact of
Alternative Data

To assess how well the model performed with alternative data,
including generic, premium-related, and finance-related data,
the three categories in Table 24 were combined into distinct
groups to examine the impact on the likelihood of policyholders
paying the 13th-month premium, as presented in Figure 13.

The experiment used Group 1 data, made up of generic data

Figure 13
Description of data
Groups 1-3 for VFL

Part Four: Technical Evaluation of the Proposed Framework

only, to examine the relationship between insurance traditional
data and the likelihood of policyholders paying the 13th-month
premium. Building upon Group 1, Group 2 expands the data
complexity by incorporating the premium data to determine
whether such data has an impact on the target variable. Group
3 represents the highest level of data complexity, combining
generic data, premium data, and finance data. The experiments
for evaluating the impact of the three types of alternative data
are illustrated in Figure 13.

VAR26-VAR28

crovp > T
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Figure 14 Experiments designed to evaluate the impact of alternative data across Groups 1-3

Insurance dataset

Generic data +
Premium data +
Finance data

Generic data +
Premium data

Group 2

Training 80%, testing 20%

o

o

Decision
Tree

Naive
Bayes

ERER

I

Random
Forest

Gradient Neural
] [ Boosting ] [ AGBoost ] [ Network ]

(

Predict the payment behaviour across Groups 1-3 with each algorithm
Metric: AUC

)

Whitepaper on Federated Learning / 2025 067 mmmem



Part Four: Technical Evaluation of the Proposed Framework

4.4 Experiment Two: Impact of Data
Volume

A scarcity of comprehensive data may hinder insurance
providers from thoroughly studying their customers’ behaviour
patterns. This challenge can be effectively addressed through

data collaboration among insurance companies and the
application of HFL. In HFL, participants share the same feature
space, using a common set of features such as policy type
and premium amount. Although the actual data samples differ
among insurers, each insurer has data on these common
features.

Figure 15 Description of Set A, Set B, and Set C for HFL

)

o1y

Insurer A Insurer B

U

Set A

+

Set B
18,000

"/
O

12,000

O

Local Model A Local Model B

To investigate the impact of data volume on model training,
this experiment split the insurance dataset into two sets.
This represented a two-collaborator federation, in which
Insurer A holds 18,000 samples (Set A) and Insurer B holds
12,000 samples (Set B). Through FL, Insurers A and B could
collaboratively develop a global model by aggregating their
datasets (Set C, 30,000 samples). The performances of a
range of ML models on Set A, Set B, and Set C were evaluated
separately to compare the model performances of local models
and the federated model.
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4.5 Evaluation Results

4.5.1 Performance (AUC scores)
Using Different Machine Learning
Algorithms

Experiment One focused on assessing the effectiveness of
applying alternative data to the insurance business. The AUC
metric was applied to evaluate the performance of the models.
Generally, an AUC score above 0.7 is considered acceptable.



e AUC scores of different ML algorithms on the
single data group

Figure 16 illustrates the ROC curves depicting the predictions
of each ML algorithm of policyholders paying or not paying
the 13th-month premium on data Group 3 (full dataset).
Generally, an AUC of 0.5 indicates a model that performs no
better than random guessing. An AUC of 1 implies that the
model has perfect discrimination ability, being considered an
ideal classifier. There is no specific threshold for the AUC that

indicates a well-functioning model.

In general, modern model mechanisms — such as ensemble
learning algorithms like Random Forest, XGBoost, and
Gradient Boosting, demonstrated higher predictive power than
traditional models like KNN and Naive Bayes. However, these
latter traditional methods have been used for a long time and
have solid theoretical foundations. Traditional classification
mechanisms like Decision Tree and LR also performed

reasonably well on this task.

Receiver Operating Characteristic (ROC) Curve

Figure 16
ROC curves of ML algorithms 1.0
applied to data Group 3 (full
dataset)
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--- KNN (AUC = 0.5950
0.0 - Random Guess (AUC = 0.5000)
0.0 0.2 0.4 0.6 0.8 1.0

e AUC scores of ML algorithms across the
different data groups

Table 25 presents the AUC scores for various ML algorithms
in predicting the likelihood of policyholders paying the 13th-

False Positive Rate

month premium at the new business stage across data Groups
1, Group 2, and Group 3. KNN achieved the lowest AUC
scores, and XGBoost the highest (highlighted).
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Table 25 AUC scores of ML algorithms across data Groups 1-3

Group 1 Generic data

Group 3 Generic data +
Group 2 Generic data +
Premium data + Finance
Premium data

Logistic Regression (LR) 0.6079
Naive Bayes 0.5825
K Nearest Neighbours (KNN) 0.5745
Decision Tree 0.6072
Random Forest 0.6469
Gradient Boosting 0.6566
XGBoost 0.6572
Neural Network (NN) 0.5923

. Improved predictive performance with increased
features and variables

AUC values generally increase from Group 1 to Group 3
across all models. The Group 1 dataset, with the least
information, yielded the lowest AUC scores, while the
addition of premium data (Group 2) resulted in slightly
higher scores.

. XGBoost outperformed other algorithms across the
data groups

XGBoost consistently achieved the best performance of
all the algorithms across all three data groups. XGBoost’s
Group 3 score was 0.8702, indicating good predictive

performance.

. KNN performed poorly in high dimensions and
showed limited improvement with additional data

The KNN algorithm performed the worst of all the models,
primarily due to its sensitivity to “the curse of dimensionality”,
where performance degrades as the feature count
increases. Compared to other algorithms, KNN showed
limited improvement with additional data. When there are
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. Finance data

data
0.6439 0.8474
0.6265 0.8416
0.5817 0.5950
0.6415 0.8487
0.6951 0.8697
0.7003 0.8687
0.7034 0.8702
0.6241 0.8392

many features, data points spread out, making it harder
to find “nearest neighbours.” Furthermore, KNN relies
heavily on feature similarity, so if new features cannot be
meaningfully discriminated amongst, its performance may

not improve significantly.

. NN outperformed KNN but lagged behind LR due to

training variability

NN outperformed KNN but was surpassed by LR. NN’s
performance variations can be attributed to several sources
of randomness during training, including parameter
initialisation, sample selection, and neuron dropout, as well
as the characteristics of the loss function.

significantly boosted model
performance, except for KNN

This dataset, which includes generic, premium, and
financial information, achieved the highest AUC scores
among the three groups. The finance variables captured
essential patterns and insights that were missing in the
generic and premium features, enabling the models to
better understand underlying relationships and make more

accurate predictions.



e Conclusions

Overall, the different ML algorithms exhibited varied levels of
predictive power. The progressive improvement in AUC scores
across Groups 1-3 highlights the value of utilising diverse data
sources, such as finance and premium information, to build
more accurate and robust predictive models for the insurance

industry.

4.5.2 Feature Importance of ML
Algorithms

To identify the features that contributed most to the ML models
used in the experiment, Shapley Additive Explanations (SHAP)
were applied to extract feature importance. This powerful
technique interprets the output of any ML model, regardless
of its architecture or learning algorithms. However, calculating

Part Four: Technical Evaluation of the Proposed Framework

SHAP values in FL can be computationally expensive, especially
for models with a large number of features, as it involves

evaluating all possible combinations of the features.

Table 26 presents the top 10 most important features for the
ML algorithms, excluding KNN, NN, and Gradient Boosting.
Feature importance is not relevant for KNN and NN, as these
rely on different mechanisms and do not provide explicit
importance measures. Gradient Boosting is excluded because
the top features identified by XGBoost are likely to be similar in
a Gradient Boosting model. This is because both algorithms
iteratively train weak models to build a strong predictive model,
albeit with different regularisation techniques.

Table 26 Top 10 most important features in the algorithms

Logistic

Regression

1 VAR28 VAR28
2 VAR17 VAR27
3 VAR13 VAR18
4 VAR18 VAR17
5 VAR27 VAR11
6 VAR25 VAR25
7 VAR11 VAR2
8 VAR20 VAR3
9 VAR23 VAR7
10 VAR12 VAR26

VAR28 VAR28 VAR28
VAR26 VAR25 VAR17
VAR25 VAR17 VAR20
VAR18 VAR26 VAR12
VAR20 VAR13 VAR25
VAR10 VAR20 VAR18
VAR13 VAR10 VAR22
VAR7 VAR18 VAR26
VAR23 VAR12 VAR10
VAR24 VAR7 VAR13
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a. Feature importance variation: The importance c. Lack of health-related features: None of the
of specific features differs among algorithms. For important features in Table 26 are health-related, such
instance, VAR25 (Policy Sum Assured) is the second as VAR14 (Life Assured Alcohol Declaration), VAR15
most important feature in Random Forest but is less (Life Assured BMI), and VAR16 (Life Assured Smoker
significant in other algorithms. Declaration) in the generic data, suggesting that health

information may have less impact on the likelihood

b. Consistent importance of VAR28: VAR28 (Auto Debit of policyholders paying the 13th-month premium.

of Premium Opted Flag) was consistently ranked as one
of the most important features across all algorithms due
to its strong influence on the likelihood of policyholders
paying the 13th-month premium.

However, this could change if the focus is shifted to

assessing risk profiles.

4.5.3 Evaluating the Impact of Data Volume

This section presents an analysis of the impact of increased data volume on the performance of various ML algorithms.

Table 27 AUC scores for the impact of data volume on ML algorithms

Model Logistic Naive Decision Gradient Random XGBoost Neural
Set Regression Bayes Tree Boosting Forest Network
Set A 0.8551 0.8519 0.5569 0.8454 0.8676 0.8746 0.8704 0.8233
Set B 0.8542 0.8472 0.5706 0.8383 0.8671 0.8696 0.8713 0.5343
Set C 0.8555 0.8498 0.5623 0.8507 0.8760 0.8768 0.8746 0.8399

a. AUC findings: Table 27 shows that most algorithms  C. KNN performance issues: As discussed in the
achieved higher AUC scores with the combined dataset preceding section, the KNN model’s sensitivity to “the
(Set C) compared to Set A and Set B, indicating curse of dimensionality” is the reason for its performance
that increased data volume can enhance model being near to random (since its AUC score is close to
performance. Combining heterogeneous data sources 0.5). Misleading information, imbalanced data, and
helps overcome the performance limitations of isolated duplicated records are among the factors that can
datasets. introduce noise and negatively impact accuracy and the

AUC.

b. Set C performance: Set C, which includes Set A and

Set B, consistently generated the best performance by ~ d. NN limitations: NNs excel in handling unstructured

all algorithms, except for Naive Bays and KNN. Notably,
Naive Bayes in Set C had a lower AUC score than Set A,
suggesting that simply adding records does not always
improve model performance. This decline is due to the
algorithm’s strong reliance on the assumption of feature
independence, which can be compromised when more

samples are added.
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or complex datasets, such as those relating to image
recognition, computer vision, NLP, and time series
forecasting, where traditional algorithms may struggle
to find patterns or make accurate predictions. However,
in this experiment, despite their strong feature
extraction capabilities, NN underperformed compared
to traditional algorithms (showing a near random result
of 0.5343 on Set B), probably because the task was not

complex enough to fully utilise its strengths.



e Conclusions

Most algorithms demonstrated acceptable performance but
showed varying predictive capabilities. While FL is effective in
many scenarios, it may have limitations within certain parts of
the insurance value chain, and adding additional data sources

does not always enhance model performance.

The selected algorithms showed diverse predictive abilities,
emphasising the importance of selecting the right algorithm
based on data characteristics and the specific problems being
addressed. LR is ideal for insurers facing data scarcity, due
to its simplicity, interpretability, and faster results compared to
NNs, making it more efficient in certain scenarios.

4.5.4 Evaluation of the Fast-Training
Strategy Module (FTSM)

Employing encryption in FL can significantly increase the
processing time. To address this issue, an FTSM is proposed

Part Four: Technical Evaluation of the Proposed Framework

to accelerate training while maintaining privacy, as detailed in
Section 3.3.1.2. The efficiency and effectiveness of the FTSM
was evaluated using open-source data. A comparison was
made between the training time per iteration of the existing
approach using HE and the FTSM, with LR serving as the
benchmark. The results, shown in Table 28, indicate that the
FTSM outperforms HE in three key areas:

¢ Training time: The module significantly reduced the training
time per iteration, achieving speeds from approximately 3.5
to 17.6 times faster than the existing approach.

The
performance in terms of speed and efficiency, leading to

e Efficiency: module  demonstrated  superior
potential cost savings and increased productivity in data

processing tasks.

e Versatility: The module is applicable to different datasets,
offering a versatile solution for data processing tasks.

Table 28 Comparison of training times between HE and FTSM across different datasets

Datasets

(Homomorphic Encryption)

Existing Approach

Fast-Training Strategy Module
(FTSM)

Insurance Dataset on Agency 21 seconds 6 seconds
Performance®”
Prudential Life Insurance Assessment®® 88 seconds 5 seconds
67 Retrieved from Kaggle: https://www.kaggle.com/datasets/moneystore/agencyperformance
68 Retrieved from Kaggle: https://www.kaggle.com/competitions/prudential-life-insurance-assessment/overview
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Part Five:
Proof-of-Concept Work

The Proof-of-Concept (PoC) phase during the research focused
on three specific use cases that leverage FL to enhance various
aspects of insurance operations. These use cases applied
three algorithms (Logistic Regression, Boosting, and Neural
Networks) to train and test the model. Multiple metrics were
used to quantify the performance benefits of the FL approach
compared to those resulting from training individual models
on separate local datasets. Annex A contains the detailed

performance evaluation methodology and results.

Part Five: Proof-of-Concept Work

In this FL framework, data consumers (e.g. insurers) act as
the model training initiator, providing a dataset with prediction
labels representing the target outcomes for training, while
data providers from various sectors contribute unlabelled,
anonymised and encrypted data. Participating parties have the
flexibility to collaboratively determine the role of data consumer,
thus ensuring that the model’s use for prediction aligns with
relevant compliance and regulatory requirements. Table 29
below provides an overview of the three use cases along with
the roles of the participating parties.

Table 29 An overview of the three Proof-of-Concept use cases

Use case Purpose

1. Customer Propensity * To enhance the accuracy

to Purchase of the analytical model

Participating parties

e Insurer A (Data consumer): Provides traditional
insurance data, including a label designed to

2. Claim Probability

3. Renewal Probability

with engagement insight of
customer groups, in order to
improve customer targeting
and optimise marketing
strategies to boost acquisition
and retention.

To construct a robust
predictive model that
leverages clinical data to
accurately forecast the
probability of insurance
claims.

To integrate comprehensive
insurance records with

credit rating data to forecast
customer renewal probability.

evaluate the propensity of customers to acquire
a new policy over a three-month horizon.

Company B (Data provider): Provides
anonymised, aggregated and encrypted insights
of customer groups of particular demographics
with certain behavioural and purchasing
attributes.

Insurer C (Data consumer): Provides traditional
insurance data, including a label indicating
whether the customer had ever filed any
insurance claim in the past.

Company D (Data provider): Provides historical
health data.

Insurer E (Data consumer): Provides traditional
pet insurance data, including a label used for
evaluating the policyholder’s overall risk profile,
to determine policy renewal.

Company F (Data provider): Provides pet owners’
credit rating data.
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These use cases were designed to explore the technical
feasibility of the proposed FL platform, with the goal of
demonstrating how FL can enhance insurance operations.
Apart from looking at model performance metrics, the analysis
has included examining the business value of each use case,
along with implementation considerations, practical challenges,
and proposed solutions. Insights have also been derived from
qualitative feedback from participating data partners and
observations by the research team during the PoC period.
This integrated approach has enabled a comprehensive view
of the practical applications of FL in the insurance sector to be
developed.

5.1 Use Case 1- Customer
Propensity to Purchase

5.1.1 Introduction

e Background and motivation

By gaining insights into customers’ activities, interests, and
purchasing propensity, insurers can tailor their product
offerings to better align with customers’ needs, resulting in
more relevant insurance solutions that enhance customer
satisfaction and engagement. However, leveraging alternative
data from third parties can raise data security and privacy
challenges, especially when personally identifiable information
(PIl) or other sensitive information is shared. To address these
challenges, a life insurance company (Insurer A) collaborated
with a company in retail sector (Company B) to research on the
development of propensity-to-buy Al models using aggregated
data insight from anonymised insurance data and engagement
data to conduct model training through FL, enabling Insurer A
to better understand the needs of its customers and identify
target customers for insurance products.

¢ Objectives
The primary objectives of the research of this use case were:
1. Enhanced customer targeting: To enhance customer

targeting and optimise marketing and sales strategies to

increase customer acquisition and retention rates.
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2. Improved data analytics: To leverage integrated data
for advanced analytics, enabling insights into customer
behaviours and preferences that could inform strategic
decision-making across the organisation and enhance

prediction accuracy.

3. Optimised customer support: To use engagement
insights of anonymised customer groups to anticipate
customer enquiries, for proactive support and faster

resolution times.

4. Cross-selling opportunities: To identify potential cross-
selling opportunities by better understanding customer
behaviours and preferences of customer groups with

specific attributes.

5. Enhanced
regulatory compliance by implementing robust frameworks

regulatory compliance: To strengthen

for cross-sector data insight research, ensuring adherence
to legal standards, and thus fostering trust among
stakeholders.

6. Enhanced knowledge of FL: To contribute to the existing
body of knowledge regarding the adoption of FL in the

insurance industry, thereby advancing its application.

5.1.2 Data and Experiments

e Data description

The dataset used originated from two distinct sources. Table
30 below provides a detailed description of the datasets used
by Insurer A (the data consumer) and Company B (the data
provider). In the course of the research, 1,066 matched rows
were identified by the model, with Insurer A’s dataset containing
17 features and Company B’s having 34 features. Together
this makes 51 features per customer, meaning that the dataset
is high-dimensional and allows models to capture complex
patterns and relationships. While the 1,066 matched rows
may seem modest in size compared to large-scale datasets,
they nevertheless represent a meaningful sample for predictive
modelling in the insurance domain, especially when the data is
rich in features.



The model was designed to predict whether a customer would
purchase a new policy in the next three months, based on
two years of data, with duplicate entries removed to ensure
uniqueness. The dataset was divided into training and test sets

according to an 8:2 ratio respectively.

Insurer A’s dataset included unique identifiers for customers,
which are special codes generated from encrypted customer

information. These identifiers, referred to as “key’, distinguish

Part Five: Proof-of-Concept Work

each data entry while concealing personal details, replacing
real data with random-looking strings to ensure privacy and
maintain uniqueness. Along with these keys and the target
label, the dataset included a variety of features providing a
comprehensive view of a variety of attributes for the predictive
model. Company B’s dataset, consisting of anonymised
data, complemented Insurer A’s dataset by adding insights
on attributes and preferences at aggregated customer group
levels.

Table 30 Description of the datasets provided by Insurer A & Company B

ltems Insurer A
(Data consumer)
Data types Traditional insurance data
Features e Claim history

e Last interaction

e Last purchase

e Customer since

e Residential district

e Age group

e Astrological sign
e Gender

* Income range

e Industry

® Marital status

e City of living

e Active policy premium
e Active policies
e Lapsed policies

Number of rows
(matched)

200,000 (1,066)

Number of features 17
used

Prediction Label on
Insurer A’s dataset

Company B

(Data provider)

Whether the customer
had purchased a new
policy within the past 3
months.

Alternative data
(anonymised and aggregated)

Customer engagement tags
Demographic attributes
Purchase behaviour
Redemption behaviour
Payment behaviour

Website browsing behaviour

200,000 (1,066)

34
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e Experimental findings

The federated model results in this research showed a 49.8%
improvement in predictive performance compared to the
local models®, equivalent to approximately 100 more accurate
predictions per 1,000 samples. This positive outcome is
attributable to the availability of a sufficient amount of diverse
and highly relevant data insight. For the detailed experimental
results, please refer to section 3.1 in Annex A.

i. Business value unlocked across the value chain

This use case demonstrated a substantial uplift in the accuracy
of the Propensity-To-Buy (P2B) model. Three key areas of
business value derived from this improvement are laid out
below:

¢ Improved targeting and conversion rates
With more accurate P2B predictions, an insurer can
identify high-intent customers more reliably. This allows
marketing teams to focus their efforts on segments most
likely to convert, resulting in higher campaign efficiency and
increased policy sales.

¢ Optimised marketing spend
By reducing outreach to low-probability prospects, an
insurer can lower its cost per acquisition. Resources can be
reallocated to high-performing channels and personalised
campaigns, maximising returns on marketing investment.

¢ Tailored customer engagement

The enriched model enables an insurer to develop
tailored product recommendations based on customers’
engagements and behavioural patterns. Such tailored
recommendations can improve customer satisfaction and

strengthen long-term customer relationships.

ii. Implementation considerations and limitations

¢ Regulatory compliance
In cross-sector data insight research, all parties must
navigate various Insurance

regulatory requirements.

companies must ensure that customer data used in the

o

FL platform, whether operating in the cloud or on local
premises, complies with regulatory and governmental
standards, particularly the PDPO, and uses only aggregated
and anonymised non-Pll data, where appropriate.

In2023, the 1A published the Open APl framework to promote
data collaboration and connectivity. FL can leverage open
APIs to access decentralised data, share model updates,
ensure interoperability, monitor performance, and maintain
security, thereby enhancing collaboration and maintaining
data privacy protection.

Data management and privacy measures

Data anonymisation through removal of PlI, encryption and
aggregation protects individual identities and maintains
privacy, while data minimisation principles ensure that
only necessary data insight is collected and used in the
research. Together, these measures enhance compliance
with regulatory standards and strengthen overall data
security and protection.

Access controls

Strict access controls safeguard data and ensure that only
authorised personnel can access the datasets used in
the research and the output data, thus maintaining data
integrity and security.

In-house knowledge and skills required

Successful implementation requires full engagement from
the business development team. A full-stack data expert is
needed to monitor the ML model’s performance and quantify
the generated business value. Additionally, a thorough
understanding of legal and regulatory requirements related
to data privacy and security is essential.

Dataset limitations in the POC research project

As a POC research project, there were inherent limitations
regarding the dataset, including its size and diversity, which
may have impacted the robustness of the findings.

69 The Ratio of Improvement of Federated Learning (RIFL) is a metric used to quantify the performance benefits of the FL approach compared to training individual models on separate
local datasets. For more details of the performance evaluation methodology, please refer to Annex A section 1.
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iii. Challenges and solutions
¢ Challenges related to data quality and availability

a. Matched Sample Data Deficiencies and Data Completeness

A key challenge in this use case of this research was the
lack of matched sample data, and data completeness
issues. To tackle this, the training and testing datasets were
temporarily combined to increase the sample size for model
development. While this helped mitigate the impact of
incomplete data, it also risked limiting the ability to evaluate
model generalisations. To counter this, additional validation
strategies, such as cross-validation, were employed.

Additionally, low quality fields were removed from the
datasets, improving data integrity and ensuring the

relevance and reliability of the remaining dataset.

Insufficient Data Processing Before Training

Another challenge encountered was insufficient data
processing prior to training the model. Incomplete or
poorly processed data can lead to suboptimal model
performance, as the quality of input data directly affects
the accuracy and reliability of predictions. Thorough data
preprocessing, such as data cleaning and outlier detection,

must be carried out before data is uploaded to the platform.

Risks of Bias and Inaccuracy from Missing Values

Missing values in the large dataset significantly increase the
risks of model bias and inaccuracies, wasting computational
resources. To address this, the solution simplified the ML
model by removing data fields with substantial missing

values.

Data privacy and security risks

Collecting and using Personally Identifiable Information (Pll)
in data analytics brings privacy challenges. To address
these challenges, a unique identifier system is implemented
on the datasets of Insurer A (data consumer) to replace real
data with random-looking strings and concealing personal
details. For the dataset of Company B (data provider), all Pl
were removed from the dataset before they were used for
the research. These measures enhanced security during the
matching process and prevented unauthorised personnel
from inferring meaningful information from the raw data.

Additional measures adopted included:

- Local model training and storage: Throughout the
research process, all datasets remain securely within
the premises of their respective owners —data providers
and data consumers. Only encrypted model updates
are shared for their respective on-site deployment,
reducing privacy risks and enhancing protection against
data breaches.

- Homomorphic encryption: AES-256 (Advanced
Encryption Standard with a 256-bit key) secured data
by converting it into an irreversible format, allowing
encrypted data to be processed during model
training and throughout the research process without
decryption.

- Data erasure: All output data generated from the
model was erased from the relevant platform after the
completion of the research for better privacy protection.

- Rigorous governance and review processes:
Privacy Impact Assessments (PIA) and Information
Security Risk Assessments (ISR) were conducted to
ensure compliance and data security.

¢ Platform constraints

The FL platform supports only limited model types and
tuning options, making it less flexible. More training rounds
and manual tuning can help improve performance, but this
takes a lot of time, especially when training is spread across
many locations. In production, MLOps tools can solve
this by automating testing, tracking, and training, making
updates easier to manage and scale.

Network and compliance issues

Data consumer and data provider often operate on
different network infrastructures. Moreover, security
requirements and compliance procedures required by both
data consumers and data providers can result in a lengthy

approval process.
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To address these challenges, the stakeholders established
effective communication channels for proactive discussions
on compliance and security measures. They engaged
legal and compliance teams early in the planning stage
to obtain professional advice and review engagement
documentation, while also developing a standardised
protocol to streamline the information exchange between
diverse network infrastructures. To further address data
privacy and security concerns, a tri-party non-disclosure
agreement was signed along with a license evaluation

agreement specifically for this POC project.

¢ Model selection difficulty.
Identifying the best model for any given task is challenging,
as model performance is heavily influenced by the
characteristics of the data used for training and evaluation.
Factors such as dataset size, diversity, and feature
distribution all determine a model's effectiveness for

particular applications.

To overcome this challenge, stakeholders should conduct
data profiling before model selection, ensure their model
choice is in alignment with their particular business
objectives, and use domain-specific evaluation metrics to

validate the model performance.

iv. Objective evaluation

The primary objectives of this use case under the research
project were successfully achieved. The research results
demonstrate that improved data analytics significantly boost
predictive power, providing deeper insights into customers’
behaviours and preferences and leading to better customer
targeting, cross-selling opportunities, and customer support.

The FL platform’s privacy-preserving architecture, supported
by robust data protection measures implemented by data
providers and consumers, adhere to established privacy
standards for data protection and secured information
exchange. Nevertheless, additional measures such as regular
audits and robust incident response plans are needed to fully

ensure compliance and foster greater user trust.

This use case has deepened the understanding of FL among

the insurance industry, providing insurers with valuable

firsthand experience of its applications. Overall, it demonstrates
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FL’'s ability to leverage engagement insights of anonymised
customer groups to enhance Propensity-To-Buy models,
offering a privacy-conscious approach to more effective

customer targeting for the insurance sector.

5.2 Use Case 2- Claim Probability
5.2.1 Introduction

e Background and motivation

Insurance companies closely monitor the number and cost of
claims they receive, as this information is crucial for maintaining
financial stability, managing risk, and ensuring long-term
profitability.

Given this, Insurer C collaborated with Company D (a one-stop
healthcare centre) on an FL system that can develop robust
claim models while respecting privacy. This use case aimed
to evaluate how the addition of clinical data could affect the

accuracy of insurance claim predictions.

¢ Objectives

1. Predictive model development: To develop a predictive
model for forecasting insurance claims by integrating
insurance and clinical data.

2. Impact analysis of clinical measurements: To evaluate
how policyholders’ clinical data affects their likelihood of
making insurance claims. With health insurance becoming
increasingly important in Hong Kong, this use case sought
to provide tools and insights for better risk management
within the industry.

3. Collaboration opportunities: To foster a partnership
between an insurer and a healthcare provider by leveraging
shared insights and data-driven strategies to enhance
patient care and health outcomes.

4. Regulatory compliance: To ensure compliance with
privacy regulations by using FL to enable secure, compliant
data sharing and processing.

5. Enhanced decision-making: To utilise predictive analytics
to facilitate informed decision-making in underwriting and
claims management, while also developing targeted risk
mitigation strategies to reduce the likelihood of high-cost
claims and enhance overall portfolio performance.



5.2.2 Data and Experiments

e Data description

Table 31 provides an overview of the dataset resulting from
the collaboration between Insurer C (the data consumer)
and Company D (the data provider). The dataset comprised
1,000 rows from Insurer C and 403 from Company D. After
confidential identity matching, 312 rows were matched, and

Part Five: Proof-of-Concept Work

the resulting dataset was split into an 8:2 ratio for training and

validation respectively.

The dataset combined traditional insurance data from Insurer C
with health data from Company D, excluding any missing entries.
The number of features listed in Table 31 reflects those used
throughout the model training cycle, with the prediction label

focusing on whether customers had filed insurance claims.

Table 31 Description of the datasets provided by Insurer C and Company D

Insurer C

(Data consumer)

Company D

Datalplohie Prediction Label

Data types Traditional Insurance data
Features e Age
e Gender

e Policy month

Number of rows 1,000 (312)
(matched)
Number of features 3
used

e Experimental findings

The results demonstrated that incorporating alternative data,
particularly historical health data, significantly enhances the
performance of predictive models, achieving a performance
improvement two times better than when utilising only
traditional data. Additionally, a notable and unexpected finding
from this use case is that men, despite generally engaging in
riskier behaviours, exhibited a lower likelihood of filing claims.
This insight could prompt insurers to reassess their pricing
strategies, product offerings and customer engagement
approaches to ensure greater fairmess, accuracy, and service
effectiveness. For the detailed experimental results, please

refer to section 3.2 in Annex A.

Whether the customer
had ever filed any
insurance claim in the
past

Historical health data

Clinical measurements of
patients (height, weight, fat,
metabolic age, etc)
Biomarkers of patients
(cholesterol level, fasting
blood glucose, etc)

403 (312)

36

i. Business value unlocked across the value chain

This use case demonstrated a notable improvement in the
accuracy of insurance claim prediction models. The areas of
potential business value derived from this enhancement are laid
out below, highlighting tangible benefits across underwriting,

pricing, and product development.

¢ Improved risk assessment
More accurate predictions in claims probability help insurers
assess risk more precisely, leading to better underwriting
decisions and reduced loss ratios.
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¢ Optimised pricing strategies
Enhanced model performance supports more tailored

pricing, improving competitiveness and profitability.

¢ Product innovation
Insights from health data can inform the design of new
insurance products that better meet customer needs,
especially in the health and wellness segments.

¢ Operational efficiency
Better predictions reduce manual reviews and claim

processing time, lowering operational costs.

ii. Implementation considerations and limitations

Use Case 2 shares several implementation considerations
and limitations with Use Case 1, including the need to comply
with data protection regulations, safeguard privacy through
encryption and anonymisation, effectively manage diverse
network infrastructures, and maintain strong in-house expertise
to ensure secure and successful deployment.

revealed some additional

However, Use Case 2 also

considerations and limitations, including:

¢ Data quantity and quality
The accuracy of the model’s predictions depends on the
integrity and comprehensiveness of the input data. In this
use case, the dataset was limited to only 312 samples,
presenting a constraint for training robust machine learning
models. Additionally, the dataset with fewer features
was used to reduce complexity and cost, with Insurer
C providing 3 features and Company D 36—an unequal
distribution that posed challenges in model training and
performance evaluation. Given the small sample size and
feature imbalance, it is important to consider traditional
statistical techniques as a baseline, as they are often
more suitable and interpretable under such constraints.
Ultimately, ensuring a sufficient quantity of high-quality data
and balanced features is essential for achieving meaningful

results in FL model training.

¢ Risk mitigation
While the model is designed to mitigate risks by predicting
claim probabilities, it cannot eliminate these risks entirely.
Insurance claims are influenced by many factors, some of

which may be unforeseen or difficult to quantify. Therefore,
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the model should be viewed as a risk management tool
rather than a definitive predictor of future claims.

Challenges and solutions

Heterogeneous data sources

While larger and more diverse datasets may improve model
performance, they also increase complexity and require
careful data standardisation and preprocessing, which can
be time-consuming and labour-intensive. Close partnership
and good communication between Insurer C and Company
D helped solve these challenges.

Operational burden during model iteration

The process of model iteration in this use case posed
notable operational challenges, particularly due to the need
for frequent dataset revisions and renewed consent from
data providers. Proactive planning and efficient workflows
can effectively address these issues. Close collaboration
between data partners and the implementation of robust
data governance processes can minimise the need
for frequent dataset revisions and consent renewals.
Additionally,
streamline the model iteration process, reducing the

automated tools and techniques can
overall operational burden. For instance, robotic process
automation such as UiPath can automate repetitive tasks,
allowing users to integrate them seamlessly into the

platform.

Adapt to diverse network infrastructures

In Use Case 2, the fact that the data partners had different
network infrastructures introduced unexpected technical
challenges. These included issues relating to network
proxies and inconsistent bandwidth, which affected the
efficiency of model updates and parameter exchanges.
To address these issues, the FL solution must be flexible
enough to accommodate the distinct network conditions
and varied network infrastructures of each data partner.

Utilising lightweight, low-overhead protocols, along with
techniques like data compression, batching, and adaptive
transmission rates, can reduce the network strain arising
from frequent model updates and parameter exchanges.
Additionally, intelligent monitoring and dynamic protocol
selection based on real-time network conditions can ensure
the FL process remains efficient and resilient to fluctuations

in network performance across diverse infrastructures.



Data privacy and security risks
To mitigate potential data privacy and security risks
associated with FL, the data partners implemented several

control measures:

— Data encryption: Sensitive data was encrypted
both at rest and in transit. Participants used AES-256
for data at rest and TLS protocols for data in transit,
ensuring any intercepted data would be unreadable by
unauthorised parties.

— Access controls: Strict role-based access controls
were established to limit data access to authorised
personnel only. Multi-factor authentication (MFA)
added an extra layer of security, reducing the risk of
unauthorised access.

— Data minimisation and anonymisation: The
data participants adhered to the principle of data
minimisation by sharing only essential information for
the PoC. Personal identifiers were avoided or replaced
with anonymised IDs to protect individual identities.

— Secure infrastructure: The PoC environment was
hosted on secure servers with hardened operating
systems and up-to-date security patches. Firewalls and
intrusion detection systems guarded against external
threats.

— Employee training: All team members received regular
training on data security best practices, confidentiality
obligations, and protocols for handling personal and
health information, reducing the risk of human error and
insider threats.

— Incident response plan: An incident response plan
was in place to address potential data breaches
promptly. It included procedures for containment,
eradication, recovery, and communication with affected

parties and regulators.

— Data retention and destruction: Data was retained
only as long as necessary for the PoC. Upon completion,
all data was securely destroyed using industry-
compliant methods to prevent data reconstruction.

iv. Objective evaluation

The primary objectives of this use case were successfully
achieved. A predictive model integrating insurance and clinical
data was developed that proved effective in forecasting
insurance claims. It showed significant performance
improvement compared to traditional models.

Furthermore, the analysis of clinical data uncovered valuable
insights that could help in developing innovative products
tailored to customer needs. This use case indicates that strong
partnerships between the insurance and health sectors have the
potential to drive data-driven approaches that improve patient
care and health outcomes. Finally, regulatory compliance
was effectively maintained using FL, facilitating secure cross-
sector data collaboration while adhering to privacy regulations.
Overall, these outcomes highlight the transformative potential
of integrating health data in the insurance industry.

5.3 Use Case 3- Renewal Probability

5.3.1 Introduction

e Background and motivation

Insurers need to be able to accurately predict renewal
probability in order to identify at-risk policies and effectively
plan customer retention strategies. In this use case, Insurer
E leveraged credit data from Company F to predict policy
renewals for their pet insurance offerings. Incorporating credit
information is uncommon in the insurance industry in Hong
Kong, making this collaboration a pioneering effort that could
set a precedent for other insurers.

¢ Objectives

1. Enhanced predictive model: To develop an accurate
predictive model utilising advanced FL techniques to reliably
predict customers’ renewal probabilities for insurance

policies.

2. Safeguard customer privacy and compliance: To
ensure robust protection of customer data and compliance
with all relevant data privacy regulations throughout the

modelling process.
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3. Enhance customer insights: To leverage FL and
alternative data sources (e.g. credit data) to uncover insights
identifying
opportunities for tailored marketing strategies and product

into customer behaviour and preferences,

offerings that boost customer engagement.

4. Foster strategic partnerships: To establish collaborations
with data providers, such as Company F, to enrich available
data sources. This use case partnership aimed to gain
insights from the integration of credit data and pet insurance
renewal data.

5. Drive innovation in the market: To leverage advanced
analytics and credit data to uncover insights that can drive
innovation and foster a culture of continuous improvement.

5.3.2 Data and Experiments

Table 32 provides an overview of the dataset used in this use
case. The credit data from Company F was synthetic testing
data, generated to emulate real data for this use case. The
dataset employed the encrypted HKID of the customer as the
unique identity, with the label of evaluating the policyholder’s
overall risk profile to determine policy renewal decisions.

The total number of rows in the dataset was 2,000 from Insurer
E and 19,201 from Company F. After confidential identity
matching, 1,957 rows were matched, and these matched rows
used to participate in the training and back test phases. The
whole matched dataset was split into an 8:2 ratio for model
training and validation respectively.

Table 32 Description of the datasets provided by Insurer E and Company F

Insurer E
Items
(Data consumer)
Data types Traditional pet insurance data
Features Historical claim data:

e Age of pet

e Purchased product count

e Purchased policy count

e Average premium of issued
policies

e Claim amount

e Claim ratio

e Purchase flow

Number of rows
(matched)

2,000 (1,957)

Number of 10
features used

Company F unexpectedly withdrew from the POC project
before it was completed due to the cessation of its operations
following a depletion of funds. This early exit limited the scope
of collaboration and experimentation.

e Experimental findings

Due to the exit of Company F, Insurer E was unable to
thoroughly test and fine-tune data features to achieve optimal
results. Additionally, some basic data preparation issues could
not be addressed, such as the substantial amount of data
missing from Company F’s dataset, which prevented Insurer
E from achieving a comprehensive understanding of the data
landscape. This use case once again highlights the importance
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Company F
Prediction Label

(Data provider)

Whether the
customer had
renewed the

policy.

Pet owners’ credit rating data

Payment history

Account status credit exposure
Load amount credit limit

Credit utilisation

Product holding (e.g. Type,
number, credit length, new credit)
Enquiry footprint

Credit score

Public records

19,201 (1,957)

10

of data quality and communication among data partners in the
context of FL.

i. Business value unlocked across the value chain

The use case sought to enhance predictive modelling through
advanced FL techniques in order to unlock significant business
value potential for Insurer E. The unexpected exit of Company
F hindered thorough testing and optimisation of the predictive
accuracy for customer renewal probabilities. However, the
use case did underscore the importance of data-driven
decision-making, as data privacy was upheld. This experience
emphasises the need to prioritise data quality and effective
communication among cross-sector data partners.



ii. Implementation considerations and limitations

¢ Regulatory compliance

Cross-sector data collaboration involving credit data
in Hong Kong is governed by strict regulations, such as
the PDPO. It mandates that organisations collect only
necessary personal data, obtain express and voluntary
consent if the data were to be used for a new purpose
which is not or is unrelated to the original purpose upon
collection, and implement robust security measures such
as encryption and access controls. Violations may result in

significant penalties.

The HKMA imposes additional requirements through its
Supervisory Policy Manual, specifically the module on “The
Sharing and Use of Consumer Credit Data through Credit
Reference Agencies”. This involves proper governance,
data accuracy, and consumer protection when sharing or
using credit data by authorized institutions.

Building consumer trust requires transparency about data
usage and confidentiality agreements. It is recommended
that secure communication protocols for data transmission
between devices and the central server are established,
and privacy-preserving techniques such as differential
privacy and secure multiparty computation are employed.

Data quality and preprocessing

This use case was characterised by missing data, a
common issue in financial datasets which can have
significant implications. For instance, missing data in
an income field may suggest that an applicant is self-
employed or has inconsistent income sources, impacting
creditworthiness assessments. Since data quality directly
affects model performance, the data must be thoroughly
preprocessed before training.

Key data preprocessing tasks include:

e Handling missing data or outliers

e Performing feature engineering and selection

e Normalising and scaling data variables

e Addressing class imbalances in the dataset

o

iil.

Regular monitoring and evaluation of model

performance
In this use case, the model locally trained by the data
consumer  demonstrated  satisfactory  performance,

suggesting that renewal probabilities could be effectively
captured by the local data and features. Consequently,
integrating additional data sources like credit data may not
necessarily improve the model performance, and could
even degrade it.

Therefore, it is important for the FL platform to allow data
consumers to train their models locally with ML algorithms.

Challenges and solutions

Data related issues

In this use case, the random selection of datasets by the
data partners led to numerous missing fields, resulting
in inaccurate model performance. Additionally, a lack of
familiarity with each other’s data fields made it challenging
to interpret the results. Data partners must clean their data
to ensure relevance and accuracy before uploading it to
the platform.

Furthermore, prior to model training, data partners should
engage in thorough discussions and planning regarding
data fields and structure to ensure consistent definitions.
Maintaining close communication with the system developer
is also essential for understanding system limitations and
the uploading process.

Data security and privacy risks
To mitigate the security and privacy risks associated with
FL, Insurer E implemented several control measures:

— Minimal data sharing: Only HKID numbers, a form of
Personally Identifiable Information (Pll), were included
in the data to minimise the risk of exposing sensitive
information.

— Encryption of sensitive identifiers: HKID numbers
were encrypted using the SHA-256 hashing algorithm
to enable secure data matching and analysis within the
FL model without disclosing original HKID values. While
SHA-256 is a widely adopted cryptographic method,
it is generally recommended to apply additional
safeguards to enhance protection against potential
reverse techniques.

— Data localisation: All raw data remained within the
organisation’s infrastructure, with no transfer to the
data partner. This practice eliminated the risk of data
exposure during the training process.

Whitepaper on Federated Learning / 2025 085 e



Part Five: Proof-of-Concept Work

¢ Data provider exited during the POC

Effective model training typically necessitates multiple
rounds of testing and fine-tuning for optimal results.
Unfortunately, the data provider in this study exited the
market after the initial training round due to unforeseen
circumstances. This hindered the ability to conduct further
training to refine and enhance the accuracy of the model.
To address this, experiments were simulated to verify the
findings.

evaluating data quantity, quality and relevance prior to

model training.

Resource-intensive training process

The time and computation power required for the training
process to be completed, especially for techniques like
Boosting, can be considerable, so all participating devices
must have sufficient computational power. Allocating
computational and network resources effectively across
devices helps in maintaining a balanced workload and

¢ Constraints of leveraging additional data optimal performance.
The use case also revealed that model performance is not
necessarily enhanced by adding additional data in cases  Table 33 summarises the challenges encountered in this use

of poor data quality, insufficient data quantity, or irrelevant  case, including reasons, risks and mitigation strategies.

features. It underscored the importance of carefully

Table 33 Summary of the challenges, potential risks and mitigation strategy

Challenges

Potential Reason

Potential Risk

Mitigation Strategy

Missing value in
datasets

Unpredictable
performance
improvements from
additional data

Resource-intensive
training process

Difficulty in
interpreting the
model results

Uncleaned dataset

Incomplete data
collection

Data entry errors

Less relevant dataset
is provided

Data consumer already
has high-quality data

Boosting calculation is
not optimised

Secrete sharing takes
up lots of memories

Lack of understanding
of data fields by data
partners
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Reduced accuracy of
the model due to lack
of information

Model bias due to
reliance on incomplete
data

Slows down the
convergence of the
federated model

Time wasted in training
useless models

Long training time may
crash the system

Hyperparameter
optimisation becomes
impossible due to
limited resources

Inability to derive
meaningful insights
from model results

Implement imputation
techniques (mean, median,
mode) or one-hot encoding
to fill in missing values

Conduct data preprocessing

Use auto selection to remove
unused features from each
model

Small batch pre-training to
filter out the most relevant
features

Select fewer columns for
training or use a larger
validation ratio for Boosting

Small batch pre-training to
filter only the most useful
features

Engage in comprehensive
discussions about data
definitions, structures, and
context before training

Establish a common
framework and glossary of
terms to enhance clarity
among partners



iv. Objective evaluation

While the objective of enhancing the predictive model was not
fully realised due to the unexpected exit of the data provider,
simulated experiments indicated that model performance could
significantly improve if the missing data issues are addressed
and multiple rounds of fine-tuning conducted.

The objective of safeguarding customer privacy and ensuring
compliance with data regulations was successfully met.
Furthermore, given that the integration of credit data into the
insurance sector is relatively uncommon in Hong Kong, this
collaboration could be a valuable reference point for future
initiatives. Other insurers in the region could emulate this data
collaboration model by developing similar partnerships.

5.4. Conclusion

5.4.1 Key Insights

The PoC cases demonstrated the potential of FL for the

insurance sector in the following three areas:

1. Smarter predictive models

a) Proven effectiveness of FL

FL showed its ability to develop improved predictive models in
most use cases through the incorporation of alternative data,
as shown by the fact that the federated models performed
better than the local models. Being able to more accurately
predict claim probabilities and customer propensity to purchase
enables insurance companies to undertake more precise
pricing of their insurance policies, optimise their resource
allocation, and make their marketing strategies more effective.

In addition to the use cases explored in this research, FL shows
strong potential for broader applications across the insurance
value chain, as indicated by prior studies and industry initiatives.
By enabling industry-wide data collaboration, FL allows insurers
to jointly train machine learning models while preserving the
confidentiality of proprietary and customer information. Key

areas where this approach is particularly promising include:

— Risk assessment: Collaborative modelling of underwriting
risks and expected losses enhances predictive accuracy

without compromising data privacy.

— Pricing optimization: Shared market insights support
refined pricing strategies, enabling competitive positioning

while safeguarding sensitive pricing structures.

— Fraud detection: Cross-insurer model training helps
identify organized or syndicated fraud, fostering shared

intelligence without exchanging raw claims data.

— Customer behaviour analytics: Analysing integrated
data across functional domains (e.g. claims, transactions,
customer interactions, and operational records) to

identify trends and provide useful insights that allow for

personalised services while maintaining data sovereignty

and compliance.

Table 34 shows that its advantages are being realised in diverse
areas in the financial sector, such as marketing, pricing, risk
management, and fraud detection. These examples highlight
FL’'s growing strategic importance for the insurance industry,
where secure, data-driven collaboration is a key driver of
innovation and competitive advantage.
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Table 34 Proved benefits of FL to the financial sector

Application Key Impacts

Performance Gain

Collaborators

Marketing and e |mproved cross- e Over 50% e |nsurers e China Academy
Sales selling conversion in of Information and
bancassurance e Banks Communications
Technology (2022)°
Pricing e personalised pricing e 10% = 92%, e Insurers e  WeBank”'
coverage expansion 1.5 times
increase in e Internet
profits companies
Risk e Improvement in SME e 12% e Banks e WeBank
Management loan risk control
model e Collaborative
companies
Fraud e Improvement in e 30% e Banks e China Academy
Detection cross-institutional of Information and

fraud detection

b) Importance of data quality and diversity

As with any data-driven approach, the success of FL depends
on the quantity, quality, and diversity of the input data. The PoC
emphasised the need for:

e High-quality, relevant, and diverse datasets

e (Consistent data formats and structures across partners

e Thorough data preprocessing and validation

c) Strategic resource allocation

Allocating adequate resources, such as sufficient computation
power, is also crucial for supporting comprehensive training
and swiftly addressing technical and communication issues

that arise during the process.

d) Tailored algorithm selection

Different algorithms have varying degrees of predictive
capability, and data scientists or machine learning experts
need to be available to select the most suitable algorithms.

Communications
Technology (2022)

e Data providers

2. Collaborative cross-sector partnerships

Insurers often struggle to build robust predictive models due
to limited customer interactions, resulting in a lack of labelled
data. FL addresses this by enabling insurers to collaborate
with other organisations to jointly develop ML models without
sharing sensitive data. This approach helps reduce legal and
operational barriers to data collaboration while supporting
the development of new insights, such as patterns in claims,
fraud, and customer behaviour across institutions. While FL
has the potential to alleviate compliance challenges in data
collaboration, strong partnerships and a high level of trust are
essential.

3. Enhanced data privacy

FL enables insurance companies to train ML models on
decentralised data without disclosing sensitive customer
information, supporting strong data privacy practices and
compliance with stringent data protection regulations. As
the regulatory landscape continues to evolve, FL presents
a valuable opportunity for insurers to align with emerging

70 HEERBEHARERSR
71 BRKRE, BB R

ERE, BASESREMHARRSE, 2022.
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standards and best practices. By strengthening their internal
compliance capabilities, fostering proactive engagement
with regulators, and adopting advanced privacy-preserving
techniques, insurers can further support the responsible and

effective deployment of FL across the sector.

5.4.2 Recommendations for Effective
Implementation

Based on the experience of the PoC and feedback from
participants, we recommend the following to facilitate effective
FL implementation:

e Ensure data quality, compatibility and availability

High-quality data that is accurate, complete, and representative
of the target problem is a key priority. Organisations should
implement standardised data quality validation protocols, such
as ISO/IEC 2501272 and ISO/IEC 2502473, to ensure data quality
and compatibility across various data sources. Additionally,
to comply with PDPO while ensuring data availability for FL,
for example, organisations shall inform customers about data
usage through a Personal Information Collection Statement
(PICS). Insurers can also follow PCPD’s recommendations to
consider anonymising personal data in accordance with the

recommended steps as stated in the “Guide to Getting Started

e Start with a pilot and a specific use case with Anonymisation™”.

Implementing FL is a complex undertaking, particularly in In Hong Kong, the data governance framework is guided by the

sectors like insurance where its applications are still emerging. Principles of Data Governance’ introduced by the Digital Policy
Office (DPO) in December 2024. The government and related

organisations also provide technical standards, including the

Starting with a well-defined pilot allows an organisation to
minimise risks and build a solid foundation for broader FL

implementation. Here are some key considerations: IT Security Standards and Best Practices™ and the Ethical

Artificial Intelligence Framework’, for both public and private

P— . N . .
Pilot phase: Begin with a focused pilot project to test the institutions. Moreover, when utilising generative Al technology,

FL model in a controlled setting. developers, service providers, and users should refer to the
Hong Kong Generative Artificial Intelligence (Al) Technical
& Application Guideline released by the DPO in April 2025.

This guideline covers essential areas including the scope and

©  Feasibility testing: Assess the model’s operational fit,
including technical requirements and data availability.

limitations of generative Al applications, governance principles,

o . e .
Challenge identification: Use the pilot to  uncover and potential risks such as data leakage, model bias, and

potential issues, such as data privacy concerns and system
system errors.

integration needs.

Organisations utilising geospatial data must adhere to
established standards like ISO 191577 for data quality

assessment and ISO 191157 for interoperability. These

Establish

communications with partners to facilitate collaboration

¢ Communication channels: clear

and alignment on goals. protocols enable organisations to minimise errors during data
entry and processing, ensuring the reliability and integrity of

¢ Refinement: Collect feedback to make necessary

their geospatial information while complying with regulations

adjustments, enhancing methodologies and data practices such as GDPR and maintaining secure data storage solutions.

before scaling up.

72 ISO/IEC 25012 is an international standard that defines a general data quality model for data retained in a structured format within a computer system. It can be used to establish data
quality requirements, define data quality measures, or plan and perform data quality evaluations.

73 ISO/IEC 25024 is an international standard that defines data quality measures for quantitatively measuring the data quality in terms of characteristics defined in ISO/IEC 25012. It can
be applied to any kind of data retained in a structured format within a computer system used for any kinds of applications.

74  Asia Pacific Privacy Authorities (“APPA”), Guide To Getting Started with Anonymisation, June 2025.

75 In December 2024, the Digital Policy Office (DPO) launched a thematic web page on data governance, providing a one-stop resource for the government’s data governance policies.
This page includes the Principles of Data Governance, relevant strategies, guidelines, and technical standards. https://www.digitalpolicy.gov.hk/en/our_work/data_governance/
policies_standards/policy/

76  IT Security Standards and Best Practices refer to a set of internationally recognized guidelines and frameworks designed to help organisations manage information security effectively.

77 The Ethical Al Framework, developed for internal use within the Hong Kong Government, guides the ethical application of Al and big data analytics in IT projects. It assists
bureaux and departments in incorporating ethical principles and practices during planning, design, and implementation. This framework, including its guiding principles and
assessment templates, has been revised for broader applicability, allowing other organisations to use it as a reference when adopting Al and big data analytics in their projects.
https://www.digitalpolicy.gov.hk/en/our_work/data_governance/policies_standards/ethical_ai_framework/

78 1SO 19157 is an international standard that provides guidelines for assessing the quality of geographic data, focusing on metrics such as accuracy, completeness, and consistency.
It aims to ensure reliable and trustworthy geospatial information for users.

79 I1SO 19115 is an international standard that specifies the metadata schema for describing geographic information and services, enhancing data discoverability and interoperability. It
provides guidelines for documenting data quality, ensuring effective management and sharing of geospatial datasets.
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e Foster strong partnerships

Effective implementation of FL requires close collaboration
between solution developers and project partners. Key

elements for strong partnerships include:

¢ Establish clear objectives: Define specific goals to guide
the partnership, and ensure all partners understand their
roles.

Establish a
Non-Disclosure Agreement (NDA) or formal partnership

¢ Establish a partnership agreement:

agreement to outline the terms of collaboration, such as the
roles and responsibilities of each partner, data ownership,
intellectual property rights, confidentiality considerations,
compliance and ethical considerations, and termination

conditions.

¢ Build trust through transparency: Maintain open
communication about project developments and data

usage to foster confidence among partners.

¢ Utilise secure communication channels: Use encrypted
messaging and secure data sharing platforms to protect
sensitive information.

¢ Conduct regular feedback sessions and meetings:
Schedule frequent discussions and meetings to review
progress, share insights, and address challenges early,
strengthening relationships and reinforcing commitment to

common goals.

e Develop robust privacy protocols

The FL solution must have robust security measures, such as
strong access controls, encryption, and secure communication
channels. Constant vigilance and regular security audits are
crucial to identify and address any vulnerabilities in the solution.
Certifications like ISO/IEC 270018 demonstrate a commitment

to security standards and enhance stakeholder trust.

Moreover, legal and compliance teams should ensure that the
FL initiative adheres to relevant data protection regulations,
such as the PDPO, particularly section 4 and the DPPs,

which outlines the principles of data protection, including the
requirement for personal data to be collected fairly and lawfully,
and the use of personal data be limited to or related to the
original collection purposes only. When using cloud computing
to process personally identifiable information (PIl), users should
also comply with ISO/IEC 270188 by implementing strong
data protection measures, obtaining explicit user consent, and
maintaining transparency about data usage. Regular audits and
risk assessments are also essential for ongoing compliance
and building trust.

e Adopt a comprehensive platform

Successful FL implementation requires integrated solutions that
manage the entire lifecycle effectively, from data preprocessing
to model training and result analysis. Key components include:

¢ Data preprocessing: Utilise platforms that automate data

cleaning and anonymisation.

¢ Model training: Support distributed training across nodes,
allowing local data processing.

¢ Result analysis: Implement advanced analytical features

for performance insights.

¢ Collaboration tools: Enable seamless communication
among stakeholders.

¢ Scalability and flexibility: Choose solutions that can

scale and adapt to various use cases.

Prior to deployment, organisations should conduct external
security assessments, such as the Security Risk Assessments
and Security Audits (SRAA) and Privacy Impact Assessments
(PIA), to identify potential security vulnerabilities and privacy risks
associated with sharing and processing data across platforms.
Furthermore, organisations should align their security practices
with internationally recognised frameworks such as ISO/IEC
27001, which provides standards for information security
management systems, and ISACA’s COBIT framework, which
offers guidelines for governance and management of enterprise
[T. These frameworks ensure robust security measures and
effective risk management when implementing FL systems.

80 ISO/IEC 27001, known more commonly as ISO 27001, is the leading globally recognized information security standard, developed jointly by the International Organization for
Standardisation (ISO) and the International Electrotechnical Commission (IEC). This certification focuses on information security management systems (ISMS) and is crucial for

ensuring the confidentiality, integrity, and availability of data.

81 ISO/IEC 27018 is an international standard that provides guidelines for protecting personally identifiable information (Pll) in cloud computing. It specifies controls and security
measures that cloud service providers must put in place to protect their customers’ personal data.
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e Ensure infrastructure readiness

Training FL models can be computationally intensive, and

organisations will need robust infrastructure capable of
supporting larger volumes and more diverse datasets. This
necessitates significant investment in IT infrastructure to ensure
seamless operations as data volumes grow.

infrastructure

To ensure readiness for a FL platform,

organisations should:

Assess their current IT capabilities for handling increased
data.

e Upgrade to high-performance servers and storage.

e Consider scalable cloud and distributed computing

solutions.

e Ensure a robust network for fast data transfer.

e Establish efficient data management practices.

e Set up monitoring tools and schedule regular maintenance.

e |mplement strong security measures to protect data.

e Provide training and ongoing support for staff.

¢ Ensure interoperability with existing systems

Integrating FL with legacy systems requires careful planning in

the following areas:

¢ Assessment of legacy systems: Evaluate existing
systems to identify compatibility issues.

¢ API development: Create APIs that enable FL systems to

communicate with legacy applications.

¢  Data standardisation: Standardise data formats across

systems.

¢ Gradual integration: Adopt a phased approach, starting

with pilot projects.

¢ Training and support: Provide training on using the new
FL framework alongside existing systems.

¢ Monitoring and maintenance: Establish processes for

ongoing monitoring.

¢ Translate FL improvements into business value

To effectively translate FL improvements into business value,
several key elements should be focused on.

¢ Enhanced data privacy: FL mitigates compliance risks
and reduces potential costs from data breaches, fostering
greater stakeholder trust.

¢ Operational cost analysis: A thorough examination
reveals significant resource savings, showcasing FL’s
efficiency in leveraging decentralised data.

¢ Case studies: Relevant examples illustrate FL's real-time

adaptability for quicker market responses.

¢ Modelling scalability: FL shows potential for market

expansion with minimal investment.

¢ Performance metrics: Presenting metrics that highlight
accuracy improvements, along with discussions on reduced
maintenance costs and new collaboration opportunities,
underscores how FL enhances model performance while
driving business growth and customer satisfaction.
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5.4.3 Future Enhancements

The PoC findings reveal that the FL platform utilised represents
a significant advancement in collaborative ML, particularly
for insurance companies seeking to leverage alternative data
sources without compromising data security and privacy.

To improve the effectiveness and capabilities of the platform,
the following developments are proposed for future study and

application:

¢ Increase upload data size limit: Extend the supported
upload data size limit.

e Expand data preprocessing techniques: Provide more
comprehensive data preprocessing options to improve
data preparation and enhance the platform’s data handling
capabilities.

e Improve model interpretability: Enhance model

interpretability by refining feature selection methodologies,

enabling users to better understand the factors influencing

model predictions.

Acknowledgements for contributions to this section:

Company

e Optimise model performance: Explore fine-tuning
techniques for model parameters to improve both accuracy

and efficiency.

¢ Incorporate diverse performance metrics: Introduce a
range of performance metrics tailored to meet the needs of
various business tasks.

To conclude, the PoC serves as a valuable reference for
insurance companies looking to establish collaborative
partnerships with cross-sector data providers utilising FL. This
approach holds significant potential for leveraging alternative
data sources, enhancing risk assessment, improving customer
insights, and fostering innovative product development.
By accessing diverse datasets, insurers can enrich their
understanding of customer behaviour and market trends,
driving better decision-making and leading to competitive
advantage. However, it is imperative for insurers to conduct
a thorough evaluation of its benefits and drawbacks to ensure
successful implementation and alignment with organisational

goals, as the FL is still in its infancy and has limitations.

Contributions

Bowtie & JP Health

Bowtie Life Insurance Company Limited

FWD Life Insurance Company (Bermuda) Limited
Company in Retail Sector (Anonymous)

Nova Credit Limited®?

OneDegree Hong Kong Limited

Information and advice on the PoC Work

82 Nova Credit Limited, a Hong Kong-based credit reference agency, decided to cease operations and exit the Credit Data Smart programme in July 2024 due to a depletion of funds.
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Part Six:

Roadmap for the Future

This section presents a high-level roadmap with possible future
directions for implementing FL in Hong Kong’s insurance
industry. It outlines strategic priorities in three key areas: the
technical landscape, organisational considerations, and the
enabling ecosystem. The roadmap aims to help developers
create robust and scalable FL solutions, assist organisations
in their effective implementation, and support stakeholders in
enhancing the digital ecosystem within the insurance sector.

6.1 Technical Roadmap -
Advancements in FL Technology

e Optimising the efficiency of FL

As an FL system grows in scale, to involve hundreds or
thousands of clients, its efficiency needs to be optimised for
greater scalability, responsiveness, and cost-effectiveness.
The availability of high-performance devices has lowered
the barriers to large-scale FL deployment. Key strategies for

improving FL efficiency include:

1. Adaptive client selection: Use dynamic algorithms
to prioritise which clients participate, based on their
computational capabilities, network conditions, and data
quality. Techniques such as reinforcement learning or
energy aware multi-armed bandit approach can help in
selecting the most suitable clients for the FL training round.

Develop

2. Communication-efficient protocols:

communication-efficient protocols that minimise the

transmission size of model updates and gradients.

Techniques such as gradient compression, pruning
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(e.g. sparse model representation, model pruning), and
quantisation (e.g. weight quantisation, gradient quantisation)
can minimise transmission size, boosting communication
efficiency.

3. Flexible and decentralised training: Develop training

methods that allow each participant to work at their own
pace, without having to stay perfectly in sync with others,
and investigate decentralised architectures to eliminate the
need for a central coordinator, reducing communication

bottlenecks and improving scalability.

with
hardware vendors to develop specialised FL-optimised

4. Hardware-software co-design: Collaborate
hardware accelerators, like edge devices and mobile
chipsets. Integrating such co-designed hardware-software

solutions can further optimise FL system performance.

¢ Improving data privacy and security

FL faces challenges from evolving vulnerabilities and potential
attacks. To ensure data privacy and security, organisations
should consider the following strategies:

threat Establish  robust
mechanisms for continuous monitoring and analysis of

1. Continuous monitoring:
emerging threats and vulnerabilities in FL systems, focusing
on the latest trends, attack vectors, and potential risks. This
could include implementing anomaly detection algorithms
that identify unusual patterns in model updates or client

behaviour.



2. Adopting industry-wide security standards: Adopt
industry-wide security standards in Hong Kong that align
with local regulations and international best practices.
Collaborating with regulatory bodies like the HKMA and
PCPD can help develop secure frameworks for cross-sector
data sharing through FL. Before implementing FL, system
developers and users should ensure that the platform has
obtained relevant security certifications like ISO/IEC 27001
and ePrivacyseal®®, which demonstrate a commitment to
data protection and raise stakeholder trust in FL technology.
They should also reference the 3652.1-2020 — IEEE Guide
for Architectural Framework and Application of Federated
Machine Learning® and 2986-2023 — IEEE Recommended
Practice for Privacy and Security for Federated Machine
Learning® when developing their FL applications to
ensure compliance with privacy, security, and regulatory

requirements.

3. Encouraging cross-organisation collaboration: Foster
collaboration and knowledge-sharing among organisations
to enhance security measures in FL systems. Establishing
a consortium of researchers, cybersecurity experts, and
industry stakeholders can improve information exchange
and facilitate collaborative research. In Hong Kong,

partnerships with organisations like Hong Kong Cyberport

and ASTRI can drive innovation and support joint initiatives

to enhance FL system security.

4. Establishing security-focused research initiatives:
Develop research initiatives focused on security to address
specific vulnerabilities in FL systems. Connecting Hong
Kong’s academic institutions with industry players can
leverage their expertise in cybersecurity research to

enhance system security.

5. Creating testbeds for validation: Set up testbeds to
validate privacy-preserving techniques in a controlled
environment. In Hong Kong, these testbeds can be
established  through collaborations  with  research

institutions and tech hubs like Cyberport, providing a space

for experimentation and innovation in security practices for

FL systems. Additionally, the Insurtech Sandbox launched

by the IAin 2017 is a valuable platform for testing insurance

solutions.

6. Adaptable and scalable defence mechanisms: Design
resilient and adaptable FL architectures in Hong Kong
through collaborations between local universities and
industry, including developing protocols that incorporate

local threat intelligence.

6.2 Organisation Roadmap -
Promote FL Adoption

The Organisation Roadmap seeks to create an environment
conducive to the industry adoption of FL, with a supportive
regulatory framework, industry-wide standards and guidelines,
and comprehensive educational programmes to build
awareness and skills. It aims to foster collaboration among
regulatory bodies, market participants and cross sector
stakeholders, develop secure data-sharing infrastructure, and
encourage research partnerships. The Organisation Roadmap

contains the following key actions:

1. Education about and promotion of FL: Collaborate
with industry associations (e.g. the Hong Kong Federation
of Insurers (HKFI) on educational programmes to raise
awareness of FL among insurance professionals. Through
workshops, seminars, and online resources, highlight its
potential benefits in risk assessment, customer insights,
and operational efficiencies, as well as the associated risks.

83 ePrivacyseal awards a data protection seal after conducting an in-depth audit of online and mobile products based on GDPR. It is designed for companies with no direct data
processing operations, such as cloud services and SaaS. The certification criteria are continuously updated to ensure compliance with data protection laws. In Hong Kong, the
Openhive Federated Learning Platform is the first enterprise-grade federated learning data network to obtain this certification.

84 3652.1-2020 - IEEE Guide for Architectural Framework and Application of Federated Machine Learning provides a blueprint for data usage and model building across organisations
while meeting applicable privacy, security and regulatory requirements. It defines the architectural framework and application guidelines for federated machine learning. This guide

was published on 19 March 2021.

85 2986-2023 - IEEE Recommended Practice for Privacy and Security for Federated Machine Learning provides recommended practices related to privacy and security for FML,
including security and privacy principles, defense mechanisms against non-malicious failures and examples of adversarial attacks on a FML system. This document also defines an
assessment framework to determine the effectiveness of a given defense mechanism under various settings. This document was published on 26 April 2024.
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2. Infrastructure development: Develop a federated data
exchange infrastructure modelled on the Commercial Data
Interchange (CDI)® launched by the HKMA in 2022 to
enable secure and seamless data sharing among insurers,
to support strong data governance and access control
and ensure compliance with relevant regulations, thereby
strengthening collaboration in product development and

risk management.

3. Talent development and staff training: Establish
partnerships with local universities and professional training
institutions, such as the Vocational Training Council (VTC),
to build a skilled workforce proficient in FL methodologies.

result

Such partnerships  will in specialised training

programmes and industry conferences for insurance
professionals in Hong Kong, covering the technical and
operational aspects of FL and equipping staff with the skills

to leverage FL technologies effectively.

4. Partnerships with research institutions and fintech
companies: Establish strategic partnerships with local
research institutions and fintech companies such as
ASTRI to drive innovation in FL applications, facilitating the
development of tailored solutions for the insurance market,
and promoting technology integration and scalability.

5. Establishment of industry-wide standards: Actively
develop regulatory guidelines and industry standards for
implementing innovative Al technologies such as FL in the
insurance sector. By contributing diverse perspectives
and insights, organisations can help ensure compliance,
safeguard data security, and promote best practices to
build stakeholder trust.

6.3 Ecosystem Roadmap - Cross-
sector Collaboration

The Ecosystem Roadmap aims to facilitate cross-sector
collaboration, creating synergies that enhance the effectiveness
of the insurance sector while contributing to the broader digital
transformation of Hong Kong’s economy.

cross-sector collaboration:

1. Promote Encourage

partnerships with sectors such as healthcare, banking,

research, and startups, to leverage diverse data sources
and expertise. For example, collaborations with healthcare
providers such as the Hospital Authority can enhance risk
assessment by providing access to anonymised health
data. Collaborations with government bodies such as the
HKMA can facilitate regulatory frameworks that support
data sharing and innovation.

2. Encourage stakeholder

engagement:  Engage

customers, policymakers, and industry associations,
including the HKIA and HKFI, to incorporate their diverse
perspectives into FL initiatives. Consultations, forums, and
workshops will help stakeholder needs be understood and
address data privacy and security concerns, fostering trust

and collaboration across the ecosystem.

3. Leverage existing digital infrastructure: The insurance
sector could potentially leverage existing data sharing
infrastructure, such as the HKMA’s CDI, to minimise the
time and technical resources required for data exchange.
In August 2024, the HKMA and the Digital Policy Office
(DPO) jointly announced the full operation of CDI and the
Government’s Consented Data Exchange (CDEG), which
facilitates data exchange between the government and
banks. Banks can now directly obtain company particulars
such as registered addresses or company names to
streamline various processes such as fraud detection. The
Companies Registry (CR) has become the first party to
connect to CDI through the CDEG.

In short, the FL roadmap is a multifaceted strategy to drive

continued  technical advancements, promote industry
adoption, and foster cross-sector collaboration. Key technical
focuses include creating efficient, scalable, and secure FL
solutions through adaptive client selection, communication-
optimised protocols, decentralised training architectures, and
specialised hardware. To drive adoption, the roadmap calls
for organisational changes to align incentives, modernise data
governance, and build internal capabilities. It also emphasises
the importance of cross-industry cooperation to enhance
data availability, establish common standards, and address

emerging privacy and security threats.

86 Commercial Data Interchange (CDI) is a consent-based financial data infrastructure launched by the HKMA to enhance data sharing among financial institutions. It enables the retrieval
of commercial data, especially from small and medium-sized enterprises (SMEs), from public and private data providers. CDI supports innovative financial applications like Know-
Your-Customer (KYC), credit assessment, and risk management, promoting secure and seamless data exchange in Hong Kong.
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Annex A: POC Evaluation

1. Platform System Requirements

The successful deployment of the FL platform requires
specific technical infrastructure requirements to be met, for
both hardware and software components. Table 35 outlines
the minimum hardware and software system requirements
for instaling and running the platform. For hardware, the
requirements include Kubernetes clusters, container registry,
managed PostgreSQL database, and ingress controller. For

Table 35 Requirements for platform system deployment

Requirement

Hardware Kubernetes Service

Requirements

Container Registry

Database

software, the build machine needs Docker and Helm Chart,
while the client machine should have the latest version of
the Chrome browser. These are needed to ensure that the
platform’s training performance, including its training speed,
is acceptable. The items highlighted in bold in the table could
affect performance, scalability, and reliability. Alternative
setups will require thorough evaluation to ensure they meet
the technical specifications, scalability needs, and compatibility

with existing systems, and the expertise of the team available.

Details

e 2 Kubernetes clusters, 1 node pool per
cluster, and 1 node per node pool

e Kubernetes version: 1.22 or above

¢ Node Operating System: Linux

e CPU: 8 cores with 3GHz or above

e Ram: 32 GB memory or above

e 100GB or above storage

e Fully managed database for PostgreSQL
e PostgreSQL, version 13

e Performance configuration: Basic®, 2 vCore(s)®,

1TB® or above

Application Gateway/Load Balancer/Nginx /

(for ingress controller)*

Software Build Machine

Requirements

Client Machine

e Docker — version 20.10 or above
e Helm Chart — version 3

e Chrome Browser — latest version

87 Basic refers to an entry-level performance tier provided by cloud platforms, offering essential resources at a lower cost for moderate workloads.

88 2 vCores indicates a modest compute allocation suitable for small- to medium-scale applications, often provisioned on virtualised infrastructure managed by the cloud provider.
89 The 1TB figure denotes the allocated persistent storage capacity for data, indexes, and logs. The memory is generally tied to the vCore configuration.

90 By default, the platform uses a Kubernetes-native Ingress controller (such as NGINX) or the load balancing services provided by the cloud provider, with configurations based

on environment defaults. If a dedicated hardware load balancer is required, additional evaluation of network interface specifications and bandwidth requirements should be

conducted.
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Figure 17 shows the basic architecture of the FL platform, Data Node B (the Data Provider), and the Coordinator Node

illustrating the data flow between Data Node A (the Insurer),  (IA).

Figure 17 Platform architecture overview

Data Node A >

Insurer A, Insurer C, Insurer E
(Label owner)

Database

Dispatching
Server

Application Servers

Data Nodes >
Company B, Company D,
Company F

(Data provider)

Database

Dispatching
Server

Application Servers

Coordinator Node (IA)

Dispatching
Server

Application Servers

Database

All communication tunnels are through TLS 1.3 or mTLS 1.3

2. Performance Evaluation
Methodology

For the use cases, the following performance metrics were o
used to evaluate the federated model results against the local
model results in terms of effectiveness and capability:

e Area under the curve (AUC): AUC measures the ability
of a model to distinguish between positive and negative
classes. Values range from 0O to 1, with a value of 0.5
indicating no discrimination (e.g. random guessing), and a e
value of 1 signifying perfect discrimination. In practice, an
AUC value above 0.7 is generally considered acceptable,
while values above 0.8 are often viewed as strong indicators
of good model performance.

e Gini Index (Gl): The Gini Index quantifies inequality among

values. It ranges from O (the worst performance) to 1 (the
best performance). A higher Gl Index score indicates a
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better classifier performance, while a lower value suggests
poorer performance.

KS (Kolmogorov-Smirnov) Index: The KS Index
measures the maximum difference between the cumulative
distributions of predicted probabilities for positive and
negative classes. A higher KS value indicates the model’s
stronger discriminatory power, with values above 0.3
generally considered indicative of good model performance.

Mean Squared Error (MSE): MSE quantifies the average
squared difference between predicted and actual values.
Lower values indicate better predictive accuracy, with a
value of O representing perfect predictions.

Ratio of improvement of Federated Learning (RIFL):
RIFL measures how much better the FL. model performs by
comparison with the local model. A RIFL value of greater
than 1 indicates an improvement achieved through FL,
while a value of less than 1 suggests no improvement.



3. Details of Experimental Results
3.1 Use Case 1

¢ Key performance metrics of local and federated
models

Performance metric comparisons between local and federated
models in training and back testing across varied algorithms
(Logistic Regression, Boosting, and Neural Network) are shown
in Table 36.

Local model results are obtained by training each participant’s
model using the same algorithm (e.g. Logistic Regression) and
the same federated-trained parameters, but exclusively on its
own local dataset. These results are then compared with the
federated model’s performance in back testing. These results
help assess the effectiveness of the federated trained model on
the local dataset and its potential for generalisation to unseen
data.

a. Moderate performance in local setting

In the local setting, all algorithms delivered moderate predictive
performance. Logistic Regression showed the highest AUC,
the largest KS index, and the lowest MSE, suggesting it
captured linear relationships in the data and discriminates
between false positives and true positives most effectively.
Boosting performed worst, with the highest MSE at 0.0369

Annex A: POC Evaluation

and the lowest AUC at 0.7033. However, Neural Network had
a worse KS Index than Boosting, suggesting that it struggles in

distinguishing between positive and negative classes.

b. Improved model metrics in FL

Comparing the performance metrics, such as AUC values
in bold blue and KS Index in bold black, across all models
in both local and federated settings reveals that FL generally
enhanced model performance. Logistic Regression showed
a slight improvement in AUC and Gini Index in the federated
setting, while Boosting demonstrated the most significant
gains, particularly in AUC, KS Index, and Gini Index, indicating
its superior ability to leverage diverse data. Neural Network also
showed marginal improvements in the federated setting, with a
notable increase in the KS Index. KS Index values, highlighted
in bold black, for three algorithms demonstrate an acceptable
level of above 0.3.

c. FL with Boosting

Boosting shows the most significant improvement in the
federated setting, probably due to the fact that the alternative
data provided rich, diverse information having complex
This

improvement could stem from the existence of a non-linear

interactions with features from the data consumer.

relationship between the features sourced from Company B
and Insurer A, which Boosting can handle effectively.

Table 36 Key performance metrics of local and federated models with different algorithms (Use Case 1)

Local

Federated

Logisti
ogistic 0.0319  0.7469 0.4848
Regression
Boosting 0.0369 0.7033 0.4837
Neural Network 0.0360 0.7381 0.3953

0.4937 0.0341 0.7686 0.4770 0.56372
0.4066 0.0366 0.8046 0.6304 0.6092
0.4763 0.0355 0.7458 0.4899 0.4916
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Table 37 Ratio of improvement of FL for use case 1

Gl-based RIFL MSE-based RIFL

Logistic Regression
Boosting

Neural Network

e Evaluation of the ratio of improvement of FL

The evaluation results on the ratio of improvement of FL,
namely Gl-based RIFL and MSE-based RIFL, are summarised
in Table 37.

i. FL improvement with Boosting

The majority of the models were improved to varying degrees
by applying FL techniques. Boosting demonstrated the most
significant improvements in terms of Gl-based RIFL, with
a value of pg, IMprovement = 49.83%. This indicates a
substantial relative improvement in Boosting’s performance

under the FL approach.

ii. FL improvement with Logistic Regression

For Logistic Regression, the RIFL score was zero when
evaluated by the Mean Squared Error (MSE), indicating that
the federated model performed worse than the locally trained
model. Consequently, the RIFL was capped at zero, which is
not useful. This issue may have stemmed from an imbalance
in the data in which some outcomes were more common than
others, making it difficult for the model to accurately predict

continuous values.

iii. FL improvement with Neural Network

Neural Network experienced positive improvements in both the
Gl-based RIFL and MSE-based RIFL. The Gl-based RIFL for
Neural Network was 3.21%, while the MSE-based RIFL was
1.38%.
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p.r improvement = 8.80%

Pioost iIMprovement = 49.83%

pnv improvement = 3.21%

a,r improvement = 0%
Qpoos: iIMprovement = 0.83%

ayy improvement = 1.38%

3.2 Use Case 2

The target of the model was to predict the probability of
insurance claims. The incorporation of alternative data,
specifically historical health data, had a significant impact on
the performance of the predictive models.

¢ Key performance metrics of local and federated
models

Table 38 provides a detailed comparison of key performance
metrics for both local and federated models using different

algorithms.

a. Boosting outperformed in both local and federated
settings, excelling in all metrics (MSE, AUC, KS
Index, Gini). It specifically showed the lowest MSE, and
the highest scores in AUC, Gini Index, and KS Index.
In the context of insurance claim prediction, where
data is typically skewed with fewer claim instances
than non-claims, Boosting proved to be efficient.
Because it concentrated more on incorrectly classified
instances, it enhanced the model’s performance on the
less represented class in this use case, namely claim

instances.
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Table 38 Key performance metrics of local and federated models with different algorithms (Use Case 2)

Local

Federated

Model Types
MSE AUC KS Index Gini AUC KS Index Gini

0.0617 0.2306 0.6534 0.2319 0.3067
0.0942 0.2081 0.7945 0.4394 0.5890
0.0207 0.2452 0.5351 0.1125 0.0701

Logistic
i 0.2504 0.5308 0.0783
Regression
Boosting 0.2621 0.5471 0.1457
Neural Network 0.2499 0.5104 0.0434

Federated models outperformed local models
across all three metrics. The enhanced performance
of federated models is likely attributable to their training
process, which combined traditional insurance data
from Insurer C with historical health data from Company
D. The resulting collaborative dataset was larger and
more diverse than the local dataset, enhancing the
model’s performance.

AUC and Gini Index demonstrated the federated
model’s superior predictive accuracy. The AUC
score for the local model ranged from 0.5104 to 0.5471,
indicating performance only slightly better than random
guessing. By contrast, the federated model achieved
a generally higher AUC range of 0.5351 to 0.7945,
suggesting improved predictive capability. Notably, the
Gini Index revealed a more pronounced performance
gain in the federated model, highlighting its superior

ability to distinguish between classes compared to the
local model.

d. Among the three algorithms evaluated, Neural
Networks performed the worst. In this use case,
where there is a strong correlation between the
prediction label and training features, simpler models
like Logistic Regression and Boosting can adequately
capture and explain the relationship. By contrast,
Neural Networks typically excel in scenarios with
weaker correlations or more complex, non-linear data

structures.

e Evaluation of the ratio of improvement of FL

Table 39 summarises the evaluation results, specifically the Gl-
based RIFL and MSE-based RIFL.
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Table 39 Ratio of improvement of FL for use case 2

Model Types Gl-based RIFL

Logistic Regression
Boosting

Neural Network

i. Improvements in RIFL with FL

All models exhibited positive improvements in AUC-based RIFL
and MSE-based RIFL, demonstrating the effectiveness of FL in
enhancing model performance. The Gl-based RIFL for Logistic
Regression achieved a remarkable increase of over 3 times
that of the local model, while the MSE-based RIFL showed
a notable improvement of 7.90%. Boosting experienced the
largest gains, with the Gl-based RIFL increasing by more than
5 times that of the local model, and the MSE-based RIFL
showing a substantial improvement of 20.60%.

ii. Higher Gl-Based RIFL Compared to MSE-Based
RIFL

The the substantial

improvements in Gl-based RIFL for all three ML models

results demonstrate performance

compared to their individual performances on separate local

p.r improvement > 3 times

Psoost IMprovement > 5 times

pny improvement > 2 times

MSE-based RIFL

a,z improvement = 7.90%

Qpoos: iIMprovement = 20.60%

ayy improvement = 1.91%

datasets. The Gl-based RIFL achieved a striking increase of
over five times, a level not observed in the MSE-based RIFL.

This can be attributed to the relationship between the Gini
Index and AUC. If the local model’'s AUC is 0.5 (indicating
randomness), even a small improvement in AUC can lead to a

significant increase in the Gini Index.

Simulation results

To simulate and validate the scenario that showed an extreme
improvement in the Gini Index (Gl-based RIFL), an open-source
insurance-related dataset from Kaggle® was collected. This
comprised 2,000 rows and 44 features after feature selection.
In the simulation, we assumed that Data Consumer A and Data
Provider B are joining the training, and vertically divided the
dataset into two parts. Data Consumer A contributed only 1
feature, while Data Provider B contributed 43 features.

Table 40 AUC scores and Gini Index of local and federated models for the simulated experiments

Model Types

m

Logistic Regression 0.5157 0.0314 0.5718 0.1435
Boosting 0.5010 0.0020 0.6649 0.3298
Neural Network 0.5157 0.0314 0.6372 0.2744

91 https://www.kaggle.com/datasets/moneystore/agencyperformance/data
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Table 40 presents the simulated results of the AUC scores and
Gini Index from both local and federated models. It shows that
in the local model, all AUC scores fall within the range of 0.5010
to 0.5157, indicating values close to 0.5. Their corresponding
Gl-based RIFLs in three algorithms demonstrate quite major
improvements: p, s improvement > 3 times, pg..s: IMprovement
> 163 times, and p,, improvement > 7 times. These extreme
values confirm that when there is an unequal distribution of
features among participating parties in FL, or when the local
model has an AUC value close to 0.5, the federated model
will generate a significant improvement over the local model in
terms of the Gini Index.
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3.3 Use Case 3

¢ Key Performance Metrics of Local and
Federated Models

Table 41 provides a detailed comparison of key performance
metrics for both local and federated models using different
algorithms. As the data provider did not proceed to Boosting,
some results in the table are absent, shown by “/”.

Table 41 Key performance metrics of local and federated models with different algorithms (Use Case 3)

Local

Federated

Model Types
MSE AUC KS Index MSE AUC KS Index Gini

0.9264 0.1573 0.9296 0.8373 0.8591
0.8819 0.0181 0.9874 0.9661 0.9749
0.8481 /

Logistic
i 0.1586 0.9632 0.8828
Regression
Neural Network 0.0311 0.9409 0.9927
Boosting 0.0373 0.9241 0.8481

a. Neural Network leads in local setting

In the local setting, all algorithms achieved satisfactory
KS Index values above 0.3 and AUC scores ranging from
0.9241 to 0.9632, with Logistic Regression demonstrating
the best performance. However, Neural Network excelled in
distinguishing positive and negative outcomes, evidenced by
its lower MSE and higher KS Index compared to both Logistic
Regression and Boosting.

b. Neural Network leads in federated setting

Neural Network outperformed Logistic Regression in the
federated setting, exhibiting lower MSE and higher AUC (in
bold blue), KS Index, and Gini Index. Its superior performance
may stem from its ability to automatically capture interactions
between insurance and credit features, such as identifying
higher risk in policyholders with high claim counts and low

credit scores. This is unlike Logistic Regression, which requires

manual specification of these interactions.

c. Federated model outperforms local model

The local model here is derived from federated learning,
which allows it to incorporate additional information from data
partners as a form of enhancement. As a result, metrics such
as AUC, KS Index and Gini Index may exceed those of the true
local model trained solely by the data consumer, or even those
of the federated model. However, the federated model always
has a lower MSE than the local model once it has achieved
optimal performance.

d. Incompleteness of federated model

Boosting demonstrated satisfactory local results, whereas the
federated model remained incomplete due to the exit of the
data provider.
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e Evaluation of the Ratio of Improvement of FL

The evaluation results, namely Gl-based RIFL and MSE-based RIFL, are summarised in Table 42.

Table 42 Ratio of improvement of FL for use case 3

Model Types Gl-based RIFL MSE-based RIFL

p.r improvement = 0%

Logistic Regression

Neural Network

Boosting /

The results for Logistic Regression were unexpected
in terms of Gini Index (or AUC score), with the
incorporation of alternative data having a negative effect
on the federated model.

The Gl-based RIFL for the Logistic Regression model
was p, zimprovement = 0%, a lower AUC value than the
local model. Therefore, Gl-based RIFL was capped to
0 to show its unavailability. Conversely, the MSE-based
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Ppny improvement = 10.55%

pLr improvement = 0.82%

ayy improvement = 41.97%

RIFL improvement for Logistic Regression was 0.82%,
meaning the federated model had a 0.82% lower MSE
than the local model.

Notably, Neural Network showed improvements in both
the Gl-based RIFL and MSE-based RIFL. The Gl-based
RIFL improvement for Neural Network was 10.55%,
while the MSE-based RIFL improvement was 41.97%.



Simulation results

To replicate the scenario of a negative Gl-based RIFL in Logistic

Regression, open-source insurance-related dataset from
Kaggle®, consisting of 2,000 rows and 53 features, was again
utilised. On the assumption that Data Consumer A and Data
Provider B were joining the training, the dataset was vertically
split into two parts, with Data Consumer A contributing 14
features and Data Provider B 39 features. Certain features have

missing entries.

The three algorithms, Logistic Regression, Boosting, and
Neural Network, were implemented using two distinct methods
to handle the missing entries. The first method involves filling

Annex A: POC Evaluation

the missing year with a large number, like 999,999. Another
method leverages the one-hot encoding technique, which
encodes the missing entry with O and 1, where O represents
the absence of the entry and 1 its presence.

Table 43 shows that the AUC scores for Logistic Regression,
Boosting, and Neural Network in both local and federated
models range from 0.8993 to 0.9731, indicating satisfactory
performance. However, when missing values were filled with
large numbers, the federated Logistic Regression model had
a slightly lower AUC than the local model, while Boosting and
Neural Network performed better in the federated setting.

Table 43 Local and federated models in different models with two missing value handling methods

Local
Missing value
Model Types

handling

Federated

Filling with big
0.1400 0.9037 0.6924 0.8074 0.1364 0.9028 0.6872 0.8057
number
Logistic
Regression
One-Hot
i 0.1429 0.8993 0.6679 0.7986 0.1271 0.9038 0.6776 0.8076
encoding
Filling with big
0.1202 0.9174 0.6641 0.8348 0.0728 0.9620 0.7924 0.9239
number
Boosting
One-Hot
. 0.1513 0.8748 0.6409 0.7496 0.0583 0.9731 0.8346 0.9463
encoding
Filling with big
0.1203 0.9129 0.7001 0.8258 0.1117 0.9154 0.6993 0.8307
number
Neural
Network
One-Hot
i 0.1140 0.9098 0.6915 0.8195 0.1112 0.9127 0.6993 0.8253
encoding
92 https://www.kaggle.com/datasets/moneystore/agencyperformance/data
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Table 44 Ratio of improvement of FL for the simulated experiments

Filling with big number

Model Types
Gl-based RIFL MSE-based RIFL
Logistic Regression p.r improvement= 0% a,r improvement = 2.57%
Boosting Paoost IMprovement = 10.67% U005t IMprovement = 39.43%
Neural Network pny improvement = 0.59% ayy improvement = 7.15%

One-Hot encoding

Model Types
Gl-based RIFL MSE-based RIFL

Logistic Regression p.r improvement = 1.13% p.r improvement = 10.38%
Boosting Paoost IMprovement = 26.24% Paoost iIMprovement = 61.47%
Neural Network Py improvement = 0.71% Py improvement = 2.46%

Table 44 reveals that incorporating features from Data Provider
B with Data Consumer A resulted in a Gl-based RIFL of
pir improvement = 0%, a metric that is not informative or
useful. By contrast, using one-hot encoding for missing
values improved the federated model’s performance, so that it
achieved a positive Gl-based RIFL of 1.13%.
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These results suggest that improperly handled missing values
can significantly harm the federated model's performance,
particularly for Logistic Regression, which is sensitive to data
quality. Unlike Neural Network, which functions as a “black
box”, Logistic Regression relies heavily on input feature values
for training and predictions.



Annex B: List of Acronyms

Full Form Acronyms Full Form

APIs Application programming interfaces loT Internet of Things

AUC Area Under the Curve KNN K-Nearest Neighbours

BDA Big data analytics KS Kolmogorov-Smirnov

CDFL Cross-device federated learning LR Logistic Regression

CIMM Confidential identity matching module ML Machine learning

CNN Convolutional Neural Networks MLP Multi-Layer Perceptron

CSFL Cross-silo federated learning MSE Mean squared error

DP Differential privacy NN Neural Network

DPPs Data Protection Principles PCPD Office of the Privacy Commissioner for

Personal Data

EU European Union PETs Privacy-enhancing technologies
FATE Federated Al Technology Enabler Pl Personal information

FL Federated learning Pl Personally identifiable information
FLUTE Federated Learning Utilities and Tools for PIPL Personal Information Protection Law

Experimentation

FN False negative PoC Proof-of-Concept
FP False positive PSI Private set intersection
FPR False Positive Rate RIFL Ratio of Improvement of Federated
Learning

FTL Federated transfer learning RNN Recurrent Neural Networks
FTSM Fast-training strategy module ROC Receiver Operating Characteristic
GBA Greater Bay Area SMPC Secure multi-party computation
GDPR General Data Protection Regulation TEE Trusted execution environments
Gl Gini Index TN True negative
GINA Genetic Information Nondiscrimination Act TP True positive

of 2008
HE Homomorphic encryption TPR True Positive Rate
HFL Horizontal federated learning uBlI Usage-based insurance
HKID Card Hong Kong Identity Card VFL Vertical federated learning
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Annex C: Glossary of Key Terms

Term Definition

Application programming A set of protocols, routines, and tools that allow different software applications to
interface (API) communicate with each other.
Artificial Intelligence (Al) Technology that enables computers and machines to simulate human learning,

comprehension, problem solving, decision making, creativity and autonomy.

Big Data Analytics (BDA) The process of examining large and complex datasets to uncover hidden patterns,
correlations and insights, often used to inform decision-making in various sectors,
including insurance.

Common Data Interchange A next-generation financial data infrastructure that enables more efficient financial
(CDI) intermediation in the banking system and is enhancing financial inclusion in Hong
Kong. The Hong Kong Monetary Authority (HKMA) launched a CDI in October 2022.

Collaboration Platforms Tools and frameworks that facilitate federated learning and data sharing among data
partners.

Confidential Identify Matching A newly developed module which employs a hash function and the homomorphic
Module (CIMM) encryption technique to securely match identities across different clients, and includes
a neutral third party to distribute the matched results.

Convolutional Neural Network A specialised deep learning architecture designed for processing structured grid-like

(CNN) data, such as images. CNNs automatically learn spatial hierarchies of features through
convolutional operations, making them highly effective for tasks like image recognition
and object detection.

Cross-device federated A decentralised machine learning approach where models are trained collaboratively
learning (CDFL) across a large number of devices—such as smartphones or edge devices—without
centralising raw data.

Cross-silo Federated Learning A decentralised machine learning approach where a small number of large, trusted

(CSFL) organisations (silos) collaboratively train a shared model without directly sharing their
raw data.

Data Anonymisation The process of removing personally identifiable information from datasets to protect
privacy.

Data Governance Policies and practices that ensure data is managed properly, including data quality,

data security, and compliance with regulations.

Data Node A device or entity that holds local data used for training machine learning models.
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Term
Decentralised Machine

Learning

Deep Learning

Differential Privacy (DP)

Data Protection Principles
(DPPs)

Edge Nodes

Encryption

Federated Al Technology

Enabler (FATE)

Federated Learning (FL)

False Negative (FN)

False Positive (FP)

Federated Transfer Learning
(FTL)

Fast Training Strategy Module
(FTSM)

Generative Adversarial
Network (GAN)

General Data Protection
Regulation (GDPR)

Definition

The use of machine learning techniques in a distributed manner, where data
processing and model training occur on multiple local devices or nodes without the
need for a centralised server.

An artificial intelligence (Al) method that teaches computers to process data in a way
inspired by the human brain. Deep learning models can recognise complex pictures,
text, sounds, and other data patterns, and produce accurate insights and predictions.

A mathematical framework for ensuring privacy in datasets by adding controlled noise
to data or query results. It guarantees that the inclusion or exclusion of any single
individual’s data does not significantly affect the result of an analysis or query, making
it impossible to confidently identify individuals while preserving useful aggregate
information.

A set of six core rules that govern how personal data shall be collected, handled,
stored, and used by organisations under Hong Kong’s Personal Data (Privacy)
Ordinance (PDPO).

A device located at the periphery of a network, close to data sources, that processes,
filters, and analyses data locally.

The process of transforming readable plaintext into unreadable ciphertext to mask
sensitive information from unauthorised users.

An open-source federated learning framework developed to enable secure,
collaborative Al model training across multiple parties without sharing raw data.

A machine learning approach that enables multiple participants or devices to
collaboratively train a shared model while keeping all the training data decentralised.

An error in statistical testing where a model incorrectly predicts the absence of a
condition when it actually exists.

An error in statistical testing where a model incorrectly predicts the presence of a
condition when it does not actually exist.

Enables collaborative model training across different organisations or devices with
heterogeneous data, even when their datasets have non-overlapping samples and
features.

A newly developed module that enables model updates through matrix manipulation,
each participant independently computing their respective portion of the matrix so as
to improve training efficiency.

A type of deep learning model designed to generate synthetic data that closely
resembles real data.

A comprehensive EU data privacy law that governs how organisations collect, process,
store, and share personal data of individuals.
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Term

Global Model

Gini Index (GI)

Gross Premiums

Hash

Homomorphic Encryption (HE)

Horizontal Federated Learning

(HFL)

Internet of Things (loT)

Interoperability

K-Nearest Neighbours (KNN)

Kolmogorov-Smirnov (KS)

Index

Large Language Model (LLM)

Local Training Model

Logistic Regression (LR)

Machine Learning (ML)

Machine learning Operations

(MLOps) are a set of
practices
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Definition

An aggregated model that combines the insights learned from multiple local training
models across various devices.

Measures the degree or probability of a particular variable being wrongly classified
when it is randomly chosen.

In relation to a financial year of an insurer: a) premiums after deduction of discounts
specified in policies, or refunds of premiums made in respect of any termination or
reduction of risks, but before deduction of premiums for reinsurance ceded and of
commissions payable by the insurer; and b) premiums receivable by the insurer under
reinsurance contracts accepted by the insurer.

A fixed-size string of characters generated by a cryptographic algorithm, representing
data in a unique format, commonly used in DLT networks for data integrity.

A form of encryption that allows computations to be performed on encrypted data
without first having to decrypt it.

A decentralised machine learning approach where participants share the same feature
space but have different data samples.

Refers to the network of physical objects or “things” embedded with sensors,
software, and other technologies for the purpose of collecting data and exchanging it
with other devices and systems over the internet.

The ability of applications and systems to securely and automatically exchange data
irrespective of geographical, political, or organisational boundaries.

A non-parametric method that classifies a new case based on how its neighbours are
classified.

Measures the maximum difference between the cumulative distributions of predicted
probabilities for positive and negative classes.

A type of machine learning model designed for natural language processing tasks
such as language generation.

A machine learning model that is trained on data residing on a specific client device (data
node) without that data being shared with a central server.

A supervised machine learning algorithm used for binary classification.

A subset of Al that focuses on developing algorithms that enable computers to learn
from and make predictions based on data. without being explicitly programmed.

A set of practices that automate and simplify machine learning workflows and
deployments.



Term

Multi-Layer Perceptron

Mean Squared Error (MSE)

Model Updates

Natural Language Processing
(NLP)

Neural Network (NN)

Optical Character Recognition
(OCR)

Personal Data (Privacy)
Ordinance (Cap. 486) (PDPO)

Personally Identifiable
Information (PII)

Privacy-enhancing
Technologies (PETSs)

Proof-of-Concept (PoC)

Private Set Intersection (PSI)

Role-based Access Controls

Ratio of Improvement of
Federated Learning

Recurrent Neural Network
(RNN)

Receiver Operating
Characteristic (ROC) curve

Definition

A class of feedforward artificial neural network composed of multiple layers of
interconnected neurons.

Measures the average squared difference between estimated values and the true
value.

Changes or adjustments made to a machine learning model.

A subfield of computer science and artificial intelligence (Al) that uses machine
learning to enable computers to understand and communicate using human language.

A machine learning programme, or model, that makes decisions in a manner similar
to the human brain, by using processes that mimic the way biological neurons work
together to identify phenomena, weigh options and arrive at conclusions.

The process that converts an image of a text into a machine-readable text format.

An Ordinance in Hong Kong that protects the privacy of individuals in relation to
personal data, and that provides for matters incidental to or connected with data
privacy.

Any information connected to a specific individual that can be used to uncover that
individual’s identity, such as HKID card number, full name, email address or phone
number.

Technologies, tools, techniques, and practices designed to protect the privacy of
individuals.

Evidence, typically deriving from an experiment or pilot project, which demonstrates
that a design concept, business proposal, etc. is feasible.

A secure multiparty computation cryptographic technique that allows two parties
holding data sets to compare encrypted versions of these sets and compute their
intersection.

A security model that restricts system access based on user roles rather than
individual identities.

Measures how much better a FL approach performs in comparison to a local model.

A type of artificial neural network designed for sequential data, such as speech.

A graphical plot that illustrates the performance of a classifier model at varying
threshold values.
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Term

Salt

Shapley Additive Explanations
(SHAP)

Secure Multi-party
Computation (SMPC)

Stochastic Gradient Descent
(SGD)

Trusted Execution
Environment (TEE)

TensorFlow Federated

True Negative (TN)

True Positive (TP)

True Positive Rate (TPR)

Usage-based Insurance (UBI)

Voluntary Health Insurance
Scheme (VHIS)

Vertical Federated Learning

(VFL)

Explainable Artificial
Intelligence (XAl)
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Definition

A random value added to input data (e.g. passwords) before it is processed by a
hashing algorithm. This ensures that even if two inputs are the same, their hashed
outputs will be different.

A method used in machine learning for explaining the output of a machine learning
model. It is based on Shapley values from cooperative game theory and provides a
unified approach to interpret the predictions of a wide variety of models, including

complex deep learning models.

A subfield of cryptography with the goal of creating methods for parties to jointly
compute a function over their inputs while keeping those inputs private.

An iterative method for optimising an objective function with suitable smoothness
properties (e.g. differentiable).

An environment for executing code in a secure area of a processor.

An open-source framework for machine learning and other computations on
decentralised data.

An indicator in statistical testing where a model correctly predicts the negative class.

An indicator in statistical testing where a model correctly predicts the positive class.

Measures a model’s ability to correctly identify positive cases out of all actual
positives.

A type of auto insurance that calculates premiums based on real-time driving
behaviour, rather than traditional factors like age or credit score.

A policy initiative implemented by the Hong Kong Health Bureau to regulate indemnity
hospital insurance plans provided by insurance companies to individuals. Participation
in the scheme is voluntary for both insurance companies and consumers.

A privacy-preserving machine learning paradigm where different parties hold different
features of the same set of samples.

A set of processes and methods that allows human users to comprehend and trust the
results and outputs created by machine learning algorithms.
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