應用於下一代能量轉換的氮化鎵基高密度功率模塊 (ART/265CP)

應用於下一代能量轉換的氮化鎵基高密度功率模塊 (ART/265CP)

  • 應用於下一代能量轉換的氮化鎵基高密度功率模塊 (ART/265CP)
    ART/265CP
    協作
    10 / 09 / 2018 - 09 / 09 / 2020
    15,344

    高子陽博士

    1. Platform establishment of GaN-based high density power module for next generation power conversions and the design report, including: a) Patent analysis on the power converting technologies adopting the wide-band-gap semiconductors and the report. b) Structure design of the “DSC-SiP” power converter, including modeling and simulation on stress, strain, creep, fatigue and vibration. c) Thermal design of the “DSC-SiP” power converter, including finite element & computational fluid dynamic modeling and simulation on static state & transient thermal performance. d) Electrical design of the “DSC-SiP” power converter, including high frequency resonant topology, driver-integrated solutions, etc. e) Firmware design of the “DSC-SiP” power converter, including hybrid control algorithm, adaptive SR driving and layout optimizations, etc. f) Magnetic design of the “DSC-SiP” power converter, including modeling and simulation on matrix transformer, etc. 2. Development of “All-GaN” power device for “DSC-SiP” power converter and the design report, including: a) IC design and simulation for on-chip over temperature protection (OTP) & over current protection (OCP) circuits. b) Package design of standing “All-GaN” package; c) Fabrication of on-chip integrated “All-GaN” device with OTP, OCP features and the evaluation prototype of standing “All-GaN” package; d) Preliminary performance evaluation of “All-GaN” device and the standing “All-GaN” package. 3. “DSC-SiP” power converter process design, optimization, sample build and the assembly report: a) Process design and optimization of packaging process flow & recipes for standing “All-GaN” package; b) Process design and optimization of packaging process flow & recipes for “DSC-SiP” power converter; c) Prototype sample build of “DSC-SiP” power converter. 4. Performance evaluation methodologies & testing results of the “DSC-SiP” power converter and the final report: a) Electrical evaluation methodology and testing results with maximum power conversion efficiency ≥97% & power level ≥ 1KW with a power density of 800W/in3; b) Thermal evaluation methodology and testing results with heat dissipation limit improved by 50%; c) Long-term reliability assessment methodology and the analysis report. 5. For contract service project with Fareast Huaqiang: a) A design report on high density power module and 400 pcs power module engineering samples. b) A performance evaluation report on high density power module and 1600 pcs power module engineering samples. 6. For contract service project with Jilin Sinomicroelectronics: a) A technical report on high heat dissipation, high power and high density power module. b) 68 pcs high heat dissipation, high power and high density power module engineering samples. c) A reliability testing and evaluation report on high heat dissipation, high power and high density power module. 7. For contract service project with Mainstone: a) A report on design of high density power module (1) & (2) and numerical simulations; A report on comparison between high density power module (1) and (2) based on thermal, electrical and mechanical simulations. b) 20 pcs of high density power module prototype samples; A testing and evaluation report; A technical transfer report on selected high density power module solution. 8. For contract service project with GBTech: a) A design report on AC/DC high density power module for consumer electronics applications; A design report on micro high density power module for telecommunication and data centre applications. b) 200 pcs of AC/DC high density power module prototype samples and a preliminary testing evaluation report; 500 pcs of micro high density power module prototype samples and a preliminary testing evaluation report. c) 1000 pcs of AC/DC high density power module prototype samples and a final testing evaluation report; 1500 pcs of micro high density power module prototype samples and a final testing evaluation report.

    深圳市远东华强导航定位有限公司
    深圳市远东华强导航定位有限公司 (Contract service) [贊助機構]
    廣東天澤恒益科技有限公司
    廣東天澤恒益科技有限公司 [贊助機構]
    吉林華微電子股份有限公司
    吉林華微電子股份有限公司 (Contract service) [贊助機構]
    萬訊國際有限公司
    萬訊國際有限公司 (Contract service) [贊助機構]


    相對於硅基半導體器件,以氮化鎵及碳化硅為代表的第三代半導體器件具有較大的禁帶寬度,可以突破現有硅基器件的極限,工作在更高電壓、頻率及溫度等嚴酷環境,因而被業界認為是下一代開關器件的替代方案。其中,碳化硅器件主要應用在高壓場景,而氮化鎵器件則應用在高頻場景,通過提高工作頻率而大幅度減小被動器件、系統的體積及重量。根據美國市場調研機構TMR(Transparency Market Research)在2016年8月29日最新公佈的數據顯示,氮化鎵器件在2015年的全球市場份額為8.71億美金,并將以17%的年復合增長率迅速遞增至2024年的34億美金。
    排除器件製備方面的因素,在實際應用中采用氮化鎵器件取代硅基器件是非常具有挑战性的。隨著工作頻率的提升,電寄生參數帶來的設計困难越來越大。全新的柵極驅動、高頻拓撲、控制算法、磁性器件集成及新型封裝結構及工藝等問題必須得以解決以充分發揮氮化鎵器件的內在優勢。通過在器件、封裝及模組三個層面一系列的通用平台技術研發,本項目旨在開發一種全新架構的超高密度、超高效率的功率轉換器,以此來解決基於氮化鎵器件的下一代功率轉換器所面臨的電、熱、機械及封裝等方面的挑戰。該方案具有如下關鍵技術及優勢:1)通過三維垂直堆疊的“VDG”封裝技術及“All-GaN”的器件級柵極驅動集成技術來實現氮化鎵基功率器件在高頻工作條件下的穩定開關;2)通過採用全新的矩陣式變壓器及共振式拓撲結構(簡稱“MTR”技術)來提升系統功率密度及電能轉換效率;3)通過混合式控制算法及自適應性同步整流驅動(簡稱“HCA”技術)來實現超快響應、高準確度及高效的環路控制;4)基於系統級封裝技術,通過採用三明治式全塑封封裝結構提供雙側散熱界面,以突破傳統功率轉換器的散熱極限。
    本項目將要解決的均為實現下一代氮化鎵基功率器件應用挑戰的關鍵技術,結合在之前種子項目中已實現的技術攻關,我們的最終目標不僅是提供一個技術平台,更重要是提供一個可應用在高密度能量轉換領域的實質解決方案以滿足大中華地區日益增長的企業需求。